Issue 23, 2001

The self-reaction of hydroperoxyl radicals: ab initio characterization of dimer structures and reaction mechanisms

Abstract

The global potential energy surfaces of singlet and triplet H 2 O 4 systems have been searched at the B3LYP/6-311G(d, p) level of theory; their relative energies have been calculated at the G2M(CC5)// B3LYP/6-311G(d, p) level. The results show that the most stable intermediate out of the 11 open-chain and cyclic dimers of HO 2 is the singlet HO 4 H chain-structure with C 1 symmetry which lies 19.1 kcal mol –1 below the reactants. The transition states for the production of H 2 O 2  + O 2 (singlet and triplet), H 2 O + O 3 and H 2  + 2O 2 have been calculated at the same level of theory. The results show that the most favored product channel, producing H 2 O 2  +  3 O 2 , occurs by the formation of a triplet six-member-ring intermediate through head-to-tail association with a dual hydrogen-bonding energy of 9.5 kcal mol –1 . The intermediate fragments to give H 2 O 2  +  3 O 2 via a transition state, which lies below the reactants by about 0.5 kcal mol –1 . There are four channels over the singlet surface which can produce 1 O 2 ; all the transition states associated with these channels lie above the reactants by 2.8–5.6 kcal mol –1 at the G2M level. Similarly, the O 3 and H 2 formation channels also occur over the singlet surface with high energy barriers, 5.2 and 74.2 kcal mol –1 , respectively; their formation is kinetically unimportant.

Article information

Article type
Paper

PhysChemComm, 2001,4, 106-111

The self-reaction of hydroperoxyl radicals: ab initio characterization of dimer structures and reaction mechanisms

R. Zhu and M. C. Lin, PhysChemComm, 2001, 4, 106 DOI: 10.1039/B107602G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements