Issue 1, 2001

Abstract

The full structural characterisation of the highly deintercalated LixNi1.02O2 (x ≤ 0.30) phases has been performed. The structure of the Li0.30Ni1.02O2 phase was refined by the Rietveld method. The cationic distribution was found to be identical to that of the pristine material. A study of the Li//LixNi1.02O2 system at high potential has shown the successive formation of two phases with O3 (AB CA BC) and O1 (AB) oxygen packing, respectively, near the NiO2 composition. Since slab gliding is at the origin of the O3 to O1 transition, layer displacement faults were observed in these two phases. For the O3 phase, as soon as all the lithium ions are removed from an interslab space, an O1-type fault occurs locally. In contrast, for the O1 phase, the presence of extra-nickel ions in the interslab space prevents slab gliding in the vicinity and, therefore, O3-type interslab spaces remain in the O1-type packing. The X-ray diffraction patterns were simulated using the DIFFaX program. It was shown that the stabilisation of the O1-type packing at the very end of the deintercalation process is due to a minimisation of the interactions between the p orbitals of the oxygen ions through the van der Waals gap. A two-phase domain is observed between Li0.30NiO2 and a composition close to NiO2 since, for very low lithium contents, the Ni3+/Ni4+ ordering (and the lithium/vacancy ordering) is no longer possible and the difference in size between the cations leads to the formation of constraints which destabilise the Ni3+ ions in a lattice where Ni4+ ions prevail. At the end of the deintercalation process, the NiO2 compound appears to be highly covalent, therefore, the steric effects prevail over the electrostatic repulsion effects, as in chalcogenides.

Article information

Article type
Paper
Submitted
27 Apr 2000
Accepted
27 Jun 2000
First published
10 Oct 2000

J. Mater. Chem., 2001,11, 131-141

Structural characterisation of the highly deintercalated LixNi1.02O2 phases (with x ≤ 0.30)

L. Croguennec, C. Pouillerie, A. N. Mansour and C. Delmas, J. Mater. Chem., 2001, 11, 131 DOI: 10.1039/B003377O

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements