Jump to main content
Jump to site search

Issue 9, 2001
Previous Article Next Article

An improved azo chromophore for optical NO2 sensing

Author affiliations

Abstract

In previous studies, the response to NO2 of a number of substituted azobenzenes was characterised for sensitivity and kinetics over a range of temperatures. These studies indicated that the optimal sensor of this sort must be based on a chromophore with a binding energy for the target gas of approximately 70 kJ mol−1. Here, we present data for the best chromophore which has resulted, dispersed in an addition-cure polysiloxane matrix. We characterise the activation energy for the binding of NO2 to the azobenzene sites and report measurements of the response time of thin films from which the diffusion constant of NO2 in the matrix is deduced. We report on the behaviour of the films when operated in the cycled mode. We present quartz-crystal microbalance data allowing absolute calibration of the fractional site occupancy in a related system.

Back to tab navigation

Publication details

The article was received on 06 Nov 2000, accepted on 28 Feb 2001 and first published on 22 Mar 2001


Article type: Paper
DOI: 10.1039/B008894N
Citation: Phys. Chem. Chem. Phys., 2001,3, 1750-1754
  •   Request permissions

    An improved azo chromophore for optical NO2 sensing

    A. Bradford, P. L. Drake, O. Worsfold, I. R. Peterson, D. J. Walton and G. J. Price, Phys. Chem. Chem. Phys., 2001, 3, 1750
    DOI: 10.1039/B008894N

Search articles by author

Spotlight

Advertisements