Issue 13, 2000

Developments in computational studies of crystallization and morphology applied to urea

Abstract

A new method of probing surface–surface interactions and calculating attachment energies for morphology predictions, based on the interactions between an infinite surface and a thin finite slice (a nano-crystallite), has been implemented in the ORIENT program package. This, together with existing capabilities for studying 2D periodic surface adlayers, or isolated molecular clusters on a surface, enables a wide range of complementary calculations to be performed to study crystallization phenomena of organic molecules with accurate anisotropic atom–atom intermolecular potentials, including distributed-multipole electrostatic models. Properties pertinent to the morphology and agglomeration of urea crystals are reported, including surface relaxation, attachment energies and surface energies, solvent and solute binding energies, and the inter-surface interaction energy. We correctly predict the two major forms {110} and {001} of vapour-grown urea crystals, including an observed aspect ratio. The polar cap facets of the crystals probably arise from the unusually large relaxation of a polar {111} surface which provides a further kinetic barrier to growth. A comparison of the binding energies of water and urea molecules to the different surfaces shows that the growth of the {110} surfaces will be particularly impeded by the presence of water. This rationalizes the increased morphological dominance of this face in crystals grown from solution. The interfacial energy between the dominant (110) and (001) crystal faces has also been calculated, and was found to be only about 20% smaller than the interaction between (110) surfaces.

Article information

Article type
Paper
Submitted
24 Dec 1999
Accepted
17 Apr 2000
First published
31 May 2000

Phys. Chem. Chem. Phys., 2000,2, 3017-3027

Developments in computational studies of crystallization and morphology applied to urea

O. Engkvist, S. L. Price and A. J. Stone, Phys. Chem. Chem. Phys., 2000, 2, 3017 DOI: 10.1039/A910352J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements