Issue 6, 2000

EPR on aqueous Gd3+ complexes and a new analysis method considering both line widths and shifts

Abstract

We performed variable temperature (0–100°C), concentration and frequency (9.425, 75, 150 and 225 GHz) continuous wave electron paramagnetic resonance (EPR) measurements on three different Gd(III) compounds: [Gd(H2O)8]3+, [Gd(DOTA)(H2O)] (DOTA: 1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane) and [Gd(DTPA-BMA)(H2O)] (DTPA-BMA: 1,5-[bis(N-methylcarbamoyl)methyl]-1,3,5-tris(carboxymethyl)-1,5-diamino-3-azapentane) in aqueous solution. A simultaneous analysis of peak-to-peak widths and dynamic frequency shifts provides access to the transverse electronic relaxation, which is described using a transient zero field splitting (ZFS) mechanism with a spin rotation contribution. Our simultaneous analysis procedure involves numerical calculations using the full relaxation matrix and yields results in acceptable agreement with experimental data for reasonable values of the ZFS parameters (trace of the square of the ZFS Hamiltonian Δ2=1019–1020 s−2 depending on the complex, correlation time of the fluctuations τv298=10−11–10−10 s). We also discuss the relationship between our approach and recent developments found in the literature.

Supplementary files

Article information

Article type
Paper
Submitted
03 Dec 1999
Accepted
24 Jan 2000
First published
09 Jan 2000

Phys. Chem. Chem. Phys., 2000,2, 1311-1317

EPR on aqueous Gd3+ complexes and a new analysis method considering both line widths and shifts

A. Borel, É. Tóth, L. Helm, A. Jánossy and A. E. Merbach, Phys. Chem. Chem. Phys., 2000, 2, 1311 DOI: 10.1039/A909553E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements