Volume 114, 1999

Metal oxides: O2- chemistry and dynamical effects on oxide reactivity

Abstract

Doping of CeO2 with calcium introduces defects and oxygen vacancies and leads to a strong increase of the catalytic activity. Desulfurization of SO2 with CO involves oxygen abstraction from the lattice and charge-transfer (CT) excitation; this reaction runs at a 70°C lower temperature on the doped substrate. The doping reduces the CT energy cost and the oxygen binding energy, but oxygen abstraction by CO is still not favorable for the lattice at 0 K. The charge state of the ion depends on the Madelung potential, which depends on the lattice structure. Introducing changes in temperature is found to generate vibrations of sufficiently large amplitudes that oxygen anions and cerium cations sometimes can be found at positions where they are sufficiently destabilized so as to be reactive. As the CT energies and oxygen binding energies depend on the instantaneous positions of the ions, active sites appear and disappear at the surface dynamically. The activity of the catalyst substrate is a dynamical quantity that depends on the amplitudes of thermal motion of the surface ions.

Article information

Article type
Paper

Faraday Discuss., 1999,114, 351-362

Metal oxides: O2- chemistry and dynamical effects on oxide reactivity

L. Triguero, S. de Carolis, M. Baudin, M. Wójcik, K. Hermansson, M. A. Nygren and L. G. M. Pettersson, Faraday Discuss., 1999, 114, 351 DOI: 10.1039/A904987H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements