Issue 8, 1994

Phases in the ZrxTa1 –x(O,N)y system, formed by ammonolysis of Zr–Ta gels: preparation of a baddeleyite-type solid solution phase ZrxTa1 –xO1 +xN1 –x, 0≤X≤1

Abstract

Phase formation in the system ZrxTa1x(O,N)y has been studied by ammonolysis of Zr-Ta gels, prepared by the sol–gel technique, at temperatures between 700 and 1000 °C. The starting gels and observed phases were characterised by X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM and TEM) and thermogravimetric (TG) analysis. Oxynitride phases of compositions ZrxTa1–xO1 +xN1–x, 0≤x≤1, with the baddeleyite-type structure, were prepared at 800 °C. The unit-cell volume increased linearly from 127.8 Å3 for TaON (x= 0) to 140.9 Å3 for ZrO2(x= 1). The structure was verified for the composition Zr0.4Ta0.6O1.6N0.4(x= 0.4) by a Rietveld refinement (RF= 3.5%) using Cu-Kα1, XRPD data. An orthorhombic oxynitride phase was observed in preparations at 700 °C for 0.26 ≤x≤ 0.90 in ZrxTa1–xO1+xN1–x. Unit-cell parameters and powder X-ray reflection intensities agree with an orthorhombic ZrO2 type structure. According to X-ray data, a cubic solid solution phase with a fluorite related subcell is present in materials prepared at 900 °C for 0.26≤x≤ 0.68. However, electron microdiffraction patterns suggest a metrically monoclinic unit cell with a = 6.1 Å, b= 14.1 Å, c= 7.1 Å and β= 125°. The Ta3N5, type of structure was found to incorporate up to ca. 18 atom% Zr at 900 and 1000 °C.

Article information

Article type
Paper

J. Mater. Chem., 1994,4, 1293-1301

Phases in the ZrxTa1 –x(O,N)y system, formed by ammonolysis of Zr–Ta gels: preparation of a baddeleyite-type solid solution phase ZrxTa1 –xO1 +xN1 –x, 0≤X≤1

J. Grins, P. Käll and G. Svensson, J. Mater. Chem., 1994, 4, 1293 DOI: 10.1039/JM9940401293

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements