Volume 91, 1991

Energy and structure of the transition states in the reaction OH + CO → H + CO2

Abstract

Two, quite different, experimental studies have been carried out on the reaction between OH and CO at low total pressures. In the first, rate constants have been determined at 82 and 106 K. At the lower temperature, measurements were made at 2 and 5 Torr total pressure, yielding k=(1.0 ± 0.12)× 10–13 cm3 molecule–1 s–1 and (0.91 ± 0.1)× 10–13 cm3 molecule–1 s–1, respectively. At 106 K and 4 Torr, k=(0.98 ± 0.08)× 10–13 cm3 molecule–1 s–1. Theoretical considerations show that the reaction must be in its low-pressure limit, yielding H + CO2, and that the vibrational ground-state adiabatic barrier to formation of HOCO must be <200 cm–1, significantly lower than estimated previously.

In the second series of experiments, a tunable diode laser has been used to observe transient absorptions on transitions in the ν3 infrared bands of the CO2 product of the reaction, when it is initiated by flash photolysis at room temperature. There is no excitation of the ν3 mode, and the overall vibrational distribution corresponds to an averaged vibrational energy yield of only 6%. It is concluded that energy is released largely as repulsion following passage through a transition state in which the OCO angle is ca. 171° and the O—C, C—O bond distances are very similar to those in isolated CO2.

Article information

Article type
Paper

Faraday Discuss. Chem. Soc., 1991,91, 305-317

Energy and structure of the transition states in the reaction OH + CO → H + CO2

M. J. Frost, P. Sharkey and I. W. M. Smith, Faraday Discuss. Chem. Soc., 1991, 91, 305 DOI: 10.1039/DC9919100305

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements