Issue 0, 1972

Contact angle studies of some low energy polymer surfaces

Abstract

We have explored the possibility of acquiring information on the molecular nature of some novel polymer films by following Zisman's approach of determining the critical surface tension γC which is considered to reflect the molecular composition of the solid surface. This led us to obtain equilibrium contact angle data, using both a series of pure liquids and various alcohol solutions, not only with the polymer films but also with solid surfaces of polystyrene and polymethylmethacrylate.

Lower values of γC were obtained with the solutions than with the pure liquids; these lower values are attributed to the preferential adsorption of the alcohol molecules at both the polymer-liquid and the polymer-vapour interfaces. The value of γC depends on the alcohol used, and is relatively independent of the solid : it is inferred that the alcohol is adsorbed with the hydroxyl group towards the polymer surface.

It is concluded that in certain cases, the value of γC obtained using solutions cannot be used as being characteristic of the solid (as has been suggested by Zisman), and that changes at the solid-vapour interface cannot be neglected when interpreting contact angle data. Several sets of data reported in the literature are discussed from this viewpoint. The Gibbs adsorption isotherms is applied to the contact angle data and the results add further weight to the conclusions regarding the occurrence of adsorption at both interfaces.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans. 1, 1972,68, 1190-1199

Contact angle studies of some low energy polymer surfaces

W. J. Murphy, M. W. Roberts and J. R. H. Ross, J. Chem. Soc., Faraday Trans. 1, 1972, 68, 1190 DOI: 10.1039/F19726801190

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements