RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

RSC Advances

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Full Paper

Mechanism Studies of LiFePO₄ Cathode Material: Lithiation/Delithiation Process, Electrochemical Modification and Synthetic Reaction

Feng Yu,^{aef} Lili Zhang,^b Yingchun Li,^c Yongxin An,^d Mingyuan Zhu,^a and Bin Dai*^a

s *Received (in XXX, XXX) Xth XXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX* DOI: 10.1039/b000000x

Olivine-structured lithium ion phosphate (LiFePO₄) is one of the most competitive candidates of energydriven cathode material for sustainable lithium ion battery (LIB) systems. However, the high

- ¹⁰ electrochemical performance is significantly limited by the slow diffusivity of Li-ion in LiFePO₄ (ca. 10⁻¹⁴ cm²·s⁻¹) together with the low electronic conductivity (ca. 10⁻⁹ S·cm⁻¹), which is the big challenge we are currently facing. To resolve the challenge, many efforts have been directed to dynamics of lithiation/delithiation process in Li_xFePO₄ (0≤x≤1), mechanism of electrochemical modification, and synthetic reaction process, which are all crucial for the development of high electrochemical performance
- ¹⁵ for LiFePO₄ material. In this review, in order to reflect the recent progress ranging from very fundamentals to practical applications, we specifically focus on mechanism studies of LiFePO₄ including lithiation/delithiation process, electrochemical modification and synthetic reaction. Firstly, we highlight Li-ion diffusion pathway in Li_xFePO₄ and phase translation of Li_xFePO₄. Then we summarize the modification mechanism of LiFePO₄ with high-rated capability, excellent low-temperatured performance

²⁰ and high energy density. Finally, we discuss synthetic reaction mechanism of high-temperatured carbothermal reaction route and low-temperatured hydrothermal/solvothermal reaction route.

1 Introduction

- As excellent electrochemical energy storage (EES) devices, ²⁵ lithium ion batteries (LIBs) have recently attracted significant attention, since the reversible lithiation/delithiation reaction of LiCoO₂ was discovered in 1980 and the use of LiCoO₂ as the cathode materials for LIBs in 1990.^{[1],[2]} Compared to the conventional lead-acid, nickel-cadmium and nickel-metal hydride
- ³⁰ batteries, rechargeable LIBs possess high working voltage and superior energy density.^{[3],[4]} LIBs are not only widely used in consumer electronics such as cell phones, cameras, toys and laptops, but also used to power increasingly emerging large-scale applications such as electric vehicles (EVs) and hybrid electric
- ³⁵ vehicles (HEVs).^{[5],[6]} Nowadays, LIBs would facilitate the regulation of imbalance in electrical power grids and are closest to coupling ultimate requirement of advanced energy storage technologies for the renewable energy sources including solar power, wind and ocean waves.^{[7],[8]} Noticeably, LIBs are timely
- ⁴⁰ meeting exigent demands of modern energy technology (ET), which is urgently needed to the thrust area closely linked to combustion engine and environmental pollution.^{[9],[10]} Combined with renewable energy sources, LIB-based ET is an imperative step to replace the inevitably vanishing non-renewable fossil fuel ⁴⁵ and avoid negative effects from the current combustion-based

ETs on global energy and environmental problems.^{[11],[12]} LIBs have become the most viable and promising candidates for EES devices, which strongly minimize environment impact and maximize energy and resources utilization.^{[13],[14]}

Although LIBs are well positioned to satisfy the needs of modern society and emerging ecological concerns, one of the greatest challenges is unquestionably the cathode materials where the Li-ions extracting/inserting process occured.^{[15],[16]} Scientists have been focus on the crystal structures and the electrochemical 55 performance of potential cathode materials, such as olivinestructured LiMPO₄ (M=Fe, Co, Ni, Mn), α-NaFeO₂ layered LiMO₂ (M=Co, Ni, Mn), monoclinic structured Li_{1+x}V₃O₈, orthogonal structured Li2MSiO4 (M=Fe, Mn), spinel structured LiMn₂O₄ and NASCION structured Li₃V₂(PO₄)₃.^{[17],[18]} Among 60 aforementioned cathode materials, layer-structured LiCoO₂ with two-dimensional (2D) Li-ion transport has been extensively utilized in LIBs. However, it suffers from high toxicity, inferior safety and high cost.^[19] Recently, cubic-spinelled LiMn₂O₄ supporting three-dimensional (3D) Li-ion transport has also been 65 widely used in high powerful EES devices. However, its poor cycle life due to the Jahn-Teller effect remains a bing concern.[20],[21]

Thanks to the groundbreaking work conducted by Goodenough and co-workers, ^{[22],[23]} phosphate polyanionic

compound LiFePO₄ has attracted tremendous attention and has been used as cathode material in LIBs because of its fantastic performance, such as high theoretical capacity (170 mAh·g⁻¹), acceptable operating voltage (3.45V vs. Li⁺/Li), long cycle life (

- s >2000 cycles), superior safety, low cost, low toxicity, abundant resources, and environmental benign.^{[24],[25]} In the orthorhombic olivine-structured LiFePO₄, the oxygen atoms are located in a hexagonal close-packed and slightly distorted arrangement.^{[26],[27]} The phosphorus atoms are on tetrahedral sites and forming PO₄
- ¹⁰ tetrahedra with oxygen atoms. Lithium atoms from LiO_6 octahedra occupy edge-sharing octahedral positions, while iron atoms from FeO₆ octahedra occupy corner-sharing octahedral positions. Due to the edge-sharing chains along the [010] direction (i.e., b-axis) created by the LiO₆ octahedra, one-
- ¹⁵ dimensional (1D) Li-ion transport is formed in the [010] direction. At the common corners in the bc plane, one FeO_6 octahedron is chained with four FeO_6 octahedra resulting in zigzag planes parallel to the [001] direction (i.e., c-axis). Each FeO_6 octahedron shares one edge with PO_4 tetrahedra and two
- ²⁰ LiO₆ octahedra, respectively, while PO₄ tetrahedra has two common edges with LiO₆ octahedra.^[28] This special olivine-structured LiFePO₄ gives great niches including excellent structural flexibility and superior thermal stability, and provides excellent cycling capabilities and safe characteristics superior to ²⁵ other cathode materials.^{[29],[30],[31]}

However, there are some limitations of high rate capability due to simplex 1D Li-ion transport of the olive-structured LiFePO₄, which is different from the layer-structured LiCoO₂ providing 2D Li-ion transport and the cubic-spinelled LiMn₂O₄

- ³⁰ supporting 3D Li-ion transport.^{[18],[32]} Its high-rate performance is significantly limited by the slow diffusivity of the Li-ion in LiFePO₄ (ca. 10⁻¹⁴ cm²·s⁻¹) together with the low electronic conductivity (ca. 10⁻⁹ S·cm⁻¹).^{[23],[33]} The poor power density of LiFePO₄ cathode for LIBs limits its application in power-
- ³⁵ demanding EVs and HEVs.^{[15],[34]} The development of cathode materials for LIBs with high-rate capability, low-temperature performance, good cycle life and high energy density are still challenging. Efforts have been devoted to the understanding of the dynamics of the lithiation/delithiation process Li_xFePO₄
- $_{40}$ (0 \leq x \leq 1), the electrochemical reaction mechanism, and optimization of synthetic approach, which are crucial for the development of high performance LiFePO₄ material.

In this review, we highlight the mechanism studies of $LiFePO_4$ including lithiation/delithiation process, electrochemical ⁴⁵ property modification and synthetic approach, which are necessary to fully employ its great potential for practical applications. Firstly, we introduce Li-ion diffusion pathway in Li_xFePO_4 and phase translation of Li_xFePO_4 to provide fundamentals for the development of high electrochemical

- ⁵⁰ performance LiFePO₄ material. Secondly, we focus on the crucial parameters representing the performances of LiFePO₄, which mainly include specific capacity, rate capability, tap density and low temperature performance. Comprehensive improvements of all those parameters are desired and are also the targets for future
- ⁵⁵ research. Finally, we discuss the synthetic reaction mechanism of carbothermal reaction (CTR) route and hydrothermal/solvothermal reaction route, which are two of the most important synthesis routes that need to be improved

urgently. We believe this review not only benefits the research of ⁶⁰ LiFePO₄, but also provides an additional strategy for other materials potentially used in EES devices.

2 Lithiation/delithiation process in LiFePO₄

2.1 Li-ion diffusion pathways of LiFePO₄

2.1.1 One-dimensional Li-ion diffusion along [010]

65 direction

Owing to the quite compact olivine structure, LiFePO₄ exhibits intrinsic thermal stability in the fully charged state, which makes a major contribution to LIBs safety. Moreover, LiFePO₄ presents excellent structural flexibility, which provides 70 remarkably good cycling stability compared with cathode materials. However, there are still some obstacle and limitations of its high rate capability. Thus, it has been critical to explore Liion diffusion pathway and explain phase transition during the lithiation/delithiation process of LiFePO₄.^{[27],[35]} In recent years, 75 first principle-based modeling has become an important tool to study reaction in charge and discharge. In 2004, Ceder and his co-workers^[36] firstly employed first-principles method to study Li-ion transport direction in LiFePO₄. They demonstrated that Liion diffusion coefficient was successfully calculated to be several ⁸⁰ orders of magnitude higher in the [010] direction (i.e. b-axis) than in the [001] direction (i.e. c-axis). The result of $D_{1001}/D_{10101} \approx 10^{-37}$ clearly shows that [001] direction hardly makes contribution to the Li-ion motion. Li-ion diffuses through 1D channels along [010] direction with low energy barriers to cross between the $_{85}$ channels due to the FeO₆ octahedral transition state in [001] direction being face-sharing with two PO₄ tetrahedra. Islam's group^{[26],[37]} further designed the structural modeling of LiFePO₄ and used atomistic simulation method to investigate Li-ion migration energy in LiFePO₄. They found that the energy of Li-⁹⁰ ion migration is $E_{mig}([010])=0.55$ eV lower than $E_{mig}([001])=2.89$ eV and $E_{mig}([101])=3.36$ eV, which strongly indicates a preference for Li-ion transport along the [010] direction and confirmes results of Ceder's group. Some more theoretical calculations have also been reported and suggested that Li-ion 95 transport is along [101] direction due to the lower Li-ion migration energy than other directions.^{[38],[39]}

Moreover, Li-ion migration was preferential down [010] channels following a curved trajectory, which is confirmed by Yamada's group.^[40] As shown in Fig.1, ellipsoids representing 100 Li-ions were refined with 95% probability by Rietveld analysis and motions of Li atoms evolve from vibration to diffusion as an expected curved one-dimensional continuous chain. Moreover, Tse's group^[41] found that Li-ion diffusion is a dominant process trough a series jumps from one site to another, resulting into a 105 zigzag pathway along the crystallographic [010] direction. As mentioned above, the Li-ion diffusion pathway mainly occur in [010] direction, which creates simplex one-dimensional Li-ion transport pathway and is different from that of 2D layerstructured LiCoO₂ and 3D cubic-spinelled LiMn₂O₄. 1D Li-ion 110 transport tunnel is considered as the main cause of slow Li-ion diffusion, which significantly restricts the high rate performance of LiFePO₄.^[42]

In order to experimentally prove whether Li-ion diffusion

pathway is one-dimension along [010] direction, ionic conductivity (or ionic mobility) is generally measured and used to calculate ionic diffusivity. Various techniques including cyclic voltammetry (CV), galvanostatic intermittent titration technique

- ⁵ (GITT), potentiostatic intermittent titration technique (PITT), electrochemical impedance spectroscopy (EIS), *etc.*, can be used to measure ionic conductivity under applied voltage.^[43] Vaknin's group^[44] employed AC impedance spectroscopy to study the Liion conductivity of three principal directions (i.e. [100], [010] and
- ¹⁰ [001]) in single crystal LiFePO₄ as a function of temperature (325-525 K). Their results indicate that ionic conductivity along the [010] direction is much higher than that in both [100] and [001] direction, which agrees well with computational analysis. Meanwhile, Yamada's group^[40] provided clearly experimental
- ¹⁵ visualization of Li-ion transport Li_xFePO_4 (x=0.6) by combining high-temperature (620 K) powder neutron diffraction and the maximum entropy method (MEM), as shown in Fig.1b, 1c and 1d. To a large extent, lithium delocalizes along the continuous curved 1D chain along the [010] direction on account of the
- ²⁰ probability density of lithium nuclei. The result is consistent with the aforementioned computational predictions. Therefore, the lithium diffusion constant in nanoparticles with shortened transport paths is much faster than that in bulk.^[45]

2.1.2 Two-dimensional Li-ion diffusion along both

25 [010] and [001] directions

Second possible direction of Li transport has been postulated due to the chains separated by octahedral interstitial sites along the [001] direction at elevated temperature, which suggest that 2D Li-ion transport exist along both [010] and [001] directions.^{[23],[46]} ³⁰ As shown in Fig.2a, Maier's group^[47] investigated ionic and electronic conductivity in single crystalline LiFePO₄ as a function of crystallographic orientation over an extended temperature range, and found that activation energies obtained for ionic conductivities σ_{Li} + along [010] and [001] orientations are (i.e., ³⁵ E_{act}([001])=E_{act}([010])=0.62 eV) smaller than that of [100]

- $_{35} E_{act}([001])=E_{act}([100])=0.62 \text{ eV})$ smaller than that of [100] direction (i.e., $E_{act}([100])=0.74 \text{ eV})$, which is corresponding to an effectively two-dimensional Li⁺ conduction. In addition, their study suggested that activation energies presented for Li-ion diffusion DLi^{\delta} along [010] and [001] direction are comparable $r_{act}(i.e., E_{act}(010))=0.75 \text{ eV}$. E. ((010))=0.70 eV), distinctly loss
- ⁴⁰ (i.e., $E_{act}([001])=0.75$ eV, $E_{act}([010])=0.70$ eV) distinctly less than that of [100] direction (i.e., $E_{act}([100])=0.96$ eV) (see in Fig.2b), which indicated a preferential 2D Li-ion chemical diffusion in the b-c plane. The phenomenon accounted for effective two-dimension of Li-ion conductivity and diffusion (i.e.,
- ⁴⁵ isotropic in the b-c plane). Their study suggested that the ionic conductivity magnitudes in both the [010] and [001] directions and the diffusion coefficient are the similar at the temperature of 140-147 °C, indicating that 2D Li-ion transport must occur at that temperature.
- ⁵⁰ Furthermore, Nazar's group^[48] has also reported that the small polar on carrier mobility is predicted to be "two-dimensional" with motions of Li ions as well as electrons being correlated using Mössbauer spectroscopy measurement. They gave experimental evidence for a strong correlation between
- ⁵⁵ electron and lithium delocalization events suggesting they are coupled. In 2011, Henkelman's group^[49] reported the various components of Li-ion kinetics in LiFePO₄ calculated from density

functional theory (DFT). As shown in Fig.2c, there are different kinetic pathways of Li-ion diffusion on the surface, in the bulk, in ⁶⁰ the presence of defects, and in varying local environments. It is

⁶⁰ the presence of defects, and in varying local environments. It is observed that surface diffusion had high barriers resulting into slow kinetics in LiFePO₄. Moreover, the slow bulk diffusion was possibly affected by strain and Li concertration. The slow vacancy diffusion in LiFePO₄ was explained by anti-site defects, ⁶⁵ which has a barrier of 0.71 eV (Fig.2d) compared to 0.29 eV in defect-free channels. Intriguingly, a concerted Li-ion diffusion in FePO₄ exhibited a low barrier of 0.35 eV, allowing for facile cross-channel diffusion at room temperature.

2.2 Phase transition between LiFePO₄ and FePO₄

⁷⁰ 2.2.1 Two-phase transformation between LiFePO₄ and FePO₄

The lithiation/delithiation process in Li_xFePO_4 ($0 \le x \le 1$) is commonly proposed as a two-phase reaction mechanism, which includes various models: shrinking core (i.e., core–shell) ⁷⁵ model,^{[23],[50]} Laffont's (i.e., new core-shell) model,^[51] mosaic model,^{[52],[53]} domino-cascade model,^{[54],[55]} phase transformation wave model,^{[56],[57]} and many-particle model.^[58] Generally, twophase growth process involves the coexistence of LiFePO₄ and FePO₄, particlully for the large particles (e.g., particle size > 100 ⁸⁰ nm).

In 1997, Goodenough's group^[23] firstly reported that Li-ion exhibited a two-phase transport between LiFePO₄ and FePO₄ due to the flat charge/discharge profile, and introduced "core-shell" model. With delithiation, LiFePO4 change into FePO4, and 85 become two phases and a two-phase interface. This model is generally named "core-shell" model. This model can explain the reaction, However, it can not explain the continuous deviation of the open circuit voltage (OCV) from 3.45 V at the initial start and the end of the discharge. Subsequently, Srinivasan's group^[50] 90 proposed a "shrinking core" model to describe the lithiation of FePO₄. This model showed that outside the two-phase coexistence region there would be a corresponding single phase region, where lithiation proceeds from the surface of a particle moving the two phase interface. With delithiation in charging 95 process, FePO₄ shell formed and the FePO₄/LiFePO₄ interface migrated into each particle. Unefficient delithiaiton from the uncovered LiFePO₄ at the center of the larger particles easily leads to the capacity loss. Simultaneously, this shrinking-core model can successfully describe electrochemical charge/discharge ¹⁰⁰ profiles at various rates.^[59]

Similar to the shrinking-core model, Thomas's group^{[52],[53]} proposed a "mosaic model" by introducing a new concept, i.e., lithiation/delithiation starting at different nucleation sites. These two models are generally considered as "the conventional two-¹⁰⁵ phase mechanism". However, these two models do not take into account any anisotropy arising from the 1D Li-ion motion within LiFePO₄, which is powerless to describe the lithiation/delithiation process in LiFePO₄. Otherwise, the "mosaic model" is still not supported by the direct and convincing experimental evidence.

Laffont's group^[51] and Richardson's group^[60] found that the interfacial region between the LiFePO₄ and FePO₄ domains lie in the a-c plane (see in Fig.3). Then Laffont's group^[51] updated the "core-shell" model and proposed a "new core-shell" model based on studies of thin Li_xFePO₄ platelets (b-axis normal to the surface) with high resolution electron energy loss spectroscopy (HREELS). Different from the previous shrinking core model, the results suggested that the interface is constituted of FePO₄ and LiFePO₄. There is no Li_xFePO4 solid solution observed with ⁵ gradient of x ranging from 0 to 1. The schematic views of the

- interfacial region between LiFePO₄ and FePO₄ phases are provided in Fig.3. According to this new core model, Li-ion diffusion in [010] direction is asynchronous, and the Li_xFePO₄ particles always keep the structure with shell of FePO₄ and core
- ¹⁰ of LiFePO₄, as has also been suggested by Prosini's group.^[61] Moreover, this new core shell model is unambiguously supported by Lemos's group^[62] who observed the existence of both FePO₄ and LiFePO₄ phases at the interface of $Li_{0.11}$ FePO₄.
- However, Delmas' $group^{[54],[55]}$ found that the interface 15 consisted of a single-domain of Li_xFePO₄ rather than LiFePO₄ and FePO₄. Based on the results from X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM), a "domino-cascade" model was successfully established to explain phase transformation process of LiFePO₄ nanoparticles.
- ²⁰ The results illustrated that the growth of FePO₄ phase at the expense of the LiFePO₄ phase is considerably faster than the nucleation of new domain. According to the "domino-cascade" model, lithiation/delithiation totally carried out rapidly in some of the LiFePO₄ nanoparticles with charing/discharging. Thus, the
- ²⁵ partially intercalated/de-intercalated LiFePO₄ particle generally supported the coexistence of LiFePO₄ and FePO₄ particles that are single-domain.
 - In 2013, Zhou's group^[63] studied the phase transition in Li_xFePO_4 by electrochemical impedance spectroscopy (EIS) and
- ³⁰ firstly proposed a hybrid phase-transition model combining the core-shell model and demino-cascade model. Based on this model, the delithiation of Li_xFePO_4 starts with the demino-cascade model confirmed by a samll angel of 30° for the linear Warburg region of EIS, and then turn into core-shell model
- ³⁵ approved by a traditional angel of 45°. This hybrid phasetransition model gives attributions to the strong anisotropy in the Li_xFePO_4 particles and could be potentially extended to some other two-phase active electrode materials.
- Recently, a "many-particle model" has also been provided. ⁴⁰ Gaberscek's group^[58] found that Li-ions were inserted/extracted from LiFePO₄ particles one by one forming a two-phase system. Meanwhile, Zaghib's group^[64] found that both of LiFePO₄ and FePO₄ phases exist in the surface layer by using electron microscopy and Raman spectroscopy. This is intended to explain
- ⁴⁵ the fact that the lattice coherence length is the same in the process of lithiation/delithiation while invalidates both core-shell model and the domino-cascade model. Each particle would be singlephased, either FePO₄ or LiFePO₄, which explain how one particle chooses to be in one phase while another one remains in the other
- ⁵⁰ phase without violating the causality principle. Subsequently, Orikasa group^[65] observed transient phase change in two phase reaction during lithiation/delithiation process by applying the time-resolved X-ray measurement. It is found that the nonequilibrium phase state during the voltage plateau gradually ⁵⁵ changes and finally reaches the thermodynamical stable state by
- the analysis X-ray absorption near edge structure (XANES).

Basd on the observation and demonstration by Delamas' group^[54] and Ceder's group^[45], Chueh's group^[66] also observed

the overwhelming majority of Li_{0.5}FePO₄ particles (i.e., LiFePO₄ 60 electrode in 50% state-of-charge) were either almost completely delithiated LiFePO₄ particles or lithiated FePO₄ particles in 2013. With the help of scanning transmission X-ray microscopy (STXM), it is clearly found that the delithiation did not appear faster in smaller particles than larger ones resulting into a weak 65 correlation between the particle size and delithiation sequence. Therefore, the mosaic (particle-by-particle) lithiation/delithiation pathway indicated that rate performance was limited by the rate of phase-transformation initiation rather than the phase-boundary velocity. Moreover, the model can be used to predict the 70 equilibrium between LiFePO₄ and FePO₄ phases, inherent hysteretic behaviour, sequential charging/discharging mechanism and two-phase disappearance behaviour. Porous LiFePO₄ electrodes were also investigated by Bai's group^[67] using a mathematical phase-field method. It is found that the population 75 dynamics of active LiFePO₄ nanoparticles showed nonmonotonic transient currents always misinterpreted as the nucleation and growth mechanism by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory. The LiFePO4 nanoparticles were not simultaneously transformed. The results decoupled the roles ⁸⁰ of nucleation and surface reaction, which always considered to be affected by a special activation rate and the mean active particlefilling speed. Ichitsubo's group^[68] also applied the phase-field computer simulations to investigate the coherent elastic-strain energy which played a curcial role in the kinetics of phase 85 separation during lithiation/delithiation process. However, it is found that nucleation the new phase is fundamentally unlikely formed in therms of the elastic strain energy except in the vicinity of the particle surface. The simulation results illustrated that the solid-solution reaction easily occurred by reducing the particle 90 size, but the phase separation by nucleation is quite difficult to carry out. Meanwhile, Dargaville' group^[69] employed the 2D Cahn-Hilliard-reaction (CHR) equation to examine intercalation process and suggested that the phase separation only occurred at very low discharge rates.

95 All these aforementioned models are expected to understand the lithiation/delithiation process in LiFePO₄, and provide directions to improve rate capability of LiFePO₄ for high power EES applications. However, these models invalidate each other and are still under debate. Nevertheless, it is still unclear whether 100 the staging phenomenon refers to a thermodynamically metastable or stable situation in LixFePO4 nanoparticles. Theoretical and experimental and theoretical clarification should be further undertaken to clarify the formation mechanism of the lithium staging. Thus, as mentioned above, a single unified model 105 is urgently required to depict the natural lithiation/delithiation process in LixFePO4, and a computational model of lithiation/delithiation process in LiFePO₄ is essential to clarify the above question. Compared with conventional generalized gradient approximation (GGA)^{[70],[71]} and local-density 110 approximation (LDA) methods,^{[72],[73]} GGA+U method can avoid large errors especially for transition metals with strong localized or f-orbitals metals and can well improve the results.^{[74],[75],[76]} In the future, we anticipate that the lithiation/delithiation process in LiFePO₄ will be simulated by computational model using 115 GGA+U method. This natural model not only offers answers to

experimental results obtained at moderate or high rates, but also

gives the direction to prepare LiFePO₄ for high power LIBs.

2.2.2 Quasi-single-phase transformation between

LiFePO₄ and FePO₄

Different from two-phase reaction mechanism models, 5 quasi-single-phase transformation between LiFePO₄ and FePO₄ has also attracted much attention. It is doubt that an intermediate phase existing during the lithiation/delithiation process of Li_xFePO₄. In 2011, Li's group^[77] directly observed Li-ions in LiFePO₄ were at atomic resolution by an aberration-corrected 10 annular-bright-field scanning transmission electron microscopy (ABF-STEM) technique (Fig.4a), which is capable of resolving Li-ions directly. It was found that the remaining Li-ions in partially delithiated LiFePO₄ preferably occupy every second layer, along the [010] direction (i.e., b axis) (Fig.4b and 4c). 15 Obviously, this finding challenged previously proposed LiFePO₄/FePO₄ two-phase reaction mechanisms. In 2011, Ceder's group^[78] demonstrated that Li_xFePO₄ may transform through a single-phase path instead of two-phase progress. As shown in Fig.4d, the calculated single-particle voltage hysteresis

- ²⁰ is no more than 30 mV, where 0.05 < x < 0.9 in Li_xFePO₄. It is clearly shown that the Li_xFePO₄ solid solution formed and avoided phase separation in charging and discharging process. Solid-solution behavior in the Li_xFePO₄ system is also observed by Richardson's group via X-ray powder diffraction
- ²⁵ (XRD).^[79] In the Li_{0.6}FePO₄ sample, there was an intermediate of a line phase with Li_xFePO₄ (x= 0.60 ± 0.04) composition during the transformation from two-phase mixtures to single phase. In 2011, Bazant's group^[80] proposed a novel electrochemical phasefield model. Based on the model, nucleation or spinodal ³⁰ decomposition easily leads to moving phase boundaries at small
- currents, whereas particles fill homogeneously and spinodal disappears above a critical current density, as shown in Fig.5. This model can effectively explain long cycle life and superior rate capability of LiFePO₄ nanoparticles.
- Recently, single phase of solid solution Li_xFePO₄ has been found at high temperature above 200 °C.^[81] As shown in Fig.4e, Nazar's group^[48] found that single Li_xFePO₄ solid solution phase formed at elevated temperature of 212 °C and the lithiation/delithiation process were strongly enhanced. Owing to
- ⁴⁰ the single phase, the electrochemical performance is improved by a strong coupled correlation between electron and lithium delocalization events, whereas the power characteristics could be diminished in a two-phase mixture on account of low mobility of the phase boundary. All these results are in good agreement with

⁴⁵ the report of Masquelier's group,^{[82],[83]} who found that the single phase of the Li_xFePO_4 become multiphase as the temperature decrease and eventually transformed into the phases of LiFePO₄ and FePO₄ on aging at room temperature.

Excitedly, Masquelier's group^{[84],[85]} provided an in-situ ⁵⁰ experimental evidence that Li_xFePO₄ can be described as single phase from well-established two-phase lithiation process by modify the particle size and cation ordering. It is can be found that the single intermediate phases of Li_{0.5}FePO₄ and Li_{0.75}FePO₄ might be stabilized at room temperature. Simultaneously, the

 $_{55}$ Li_xFePO₄ solid solution may be stabilized below critical size of 45 nm, and completely achievable below about 15 nm at room temperature.^[86] It is worth mentioning that the

lithiation/delithiation mechanism is still in the controversy and attract more and more attention. A series of conditions including ⁶⁰ particle morphologies, synthesis conditions, charge/discharge rates, especially state particles size, are still be debated.^{[87],[88]}

3 Electrochemical property modification of LiFePO₄

The LiFePO₄ delivers high capacities more than 150 mAh g 65 ¹ at slow charging/discharging rates (e.g., 0.1 C). However, highrated charge/discharge properties and low temperature performance are severely limited due to the poor electronic conductivity and the low Li-ion diffusion efficieency. Namely, electronic conductivity and ionic diffusion rate are two of the 70 most important characteristics that need to be improved urgently. It is demonstrated to enhance the Li-ion diffusion by controlling crystal growth orientation (along the a-c plane) and reducing the particle size of LiFePO₄ (e.g., nano-sized^{[89],[90]} and 3D porous architectures^{[91],[92]}). It is also important to ensure an excellent 75 electronic conductivity by coating conductive materials (e.g., amorphous carbon,^{[93],[94]} graphene,^[95] carbon nanotubes (CNTs),^[96] silver,^[97] NiP alloy,^[98] metallic Fe₂P,^{[99],[100]} Li₃PO₄,^[101] etc.). Both ionic diffusion and electronic conductivity can be employed to improve the kinetic properties of LiFePO₄ by 80 doping in MLi and MFe sites using cations of metallic elements $(e.g., Cu^{+}, Mg^{2+}, Mn^{2+}, Al^{3+}, Ti^{4+}, Zr^{4+}, Nb^{5+}, W^{6+},$ etc.).^{[62],[102],[103]} Comprehensive improvements of all effective strategies are desired and are also the targets for the high-rated charge/discharge properties and low temperature performance, 85 which are two important parameters for future research and EES applications (especially for EV/HEV). Moreover, volume energy density of LiFePO₄ is another important parameter, which is critical to maximizing space utilization of LIBs. In the following section, we will introduce representative reports on how to 90 improve the performances of LiFePO₄. The reports are categorized into the improvement of (a) rate capability, (b) low temperature performance and (c) tap density.

3.1 Morphology control

3.1.1 Crystal growth orientation along the a-c plane

The Li-ion diffusion rates vary along different directions in LiFePO₄ lattices. If we can deliberately control the synthesis of LiFePO₄ crystals with certain exposed facets for faster Li-ion intercalation, the performances especially rate capabilities can be significantly improved. Previous reports showed that Li-ion 100 diffused fastest along [010] direction in the orthorhombic LiFePO₄ lattice.^[40] Islam's group^[104] revealed that there were mainly three crystal styles agreeing with the results from Franger's group^[105], Nazar's group^[106] and Richardson's group^[60], as shown in Fig.6a-d. The crystal growth of anisotropic 105 cathode LiFePO₄ is addressed as a key factor controlling rapid Liion diffusion. Several surface properties of olivine-structure LiFePO₄ were investigated via first principles calculations within the GGA+U framework by Ceder's group.^[107] The calculated Li redox potential for the (010) surface was 2.95 V, which is 110 significantly lower than the bulk value of 3.55 V. The study revealed that it is important to control morphology of LiFePO₄ crystal growth orientation and expose more surface of (010) with high Li⁺ diffusion rate.^[108] Thus, if LiFePO₄ crystals are

fabricated with more (010) facets, such as thin nanoplates with (010) surfaces, superior performances can be expected due to the fast Li⁺ insertion and extraction. Richardson's group^[60] reported the hydrothermal synthesis of LiFePO₄ microcrystals with 85% s (010) surface areas, but no electrochemical testing was

- performed. Further improvements, like synthesis of smaller and thinner nanoplates with more (010) surfaces, coating with conductive carbon layer may be considered to fully explore the potential of those nanoplates.^[109]
- In 2011, a combination of LiFePO₄ rectangular nanoplates was prepared by a low temperature solvothermal synthesis (STS) route reported by Kim's group,^[110] as shown in Fig.6e. It can be seen that the growth of the LiFePO₄ nanoplates is identified to be along [100] and [010] crystallographic directions, resulting into
- $_{15}$ large surface area of (001) rather than (010). Thus, the asprepared LiFePO_4 nanoplates performed first discharge capacity of only 131 mAh g^-1 at 0.25 C (Fig.7), on account of the relatively low (101) surface area. Especially, the as-prepared LiFePO_4 nanoplates exhibited a capacity decline of about 38
- $_{20}$ mAh·g⁻¹ until 8 C. Wang's group and Wu's group,^[111] found that the obtained LiFePO4/C composite exhibited high rate capability using carbon coating and performed 104 mAh·g⁻¹ and 95 mAh·g⁻¹ at 8 C and 12C, respectively.
- Fig.6f shows LiFePO₄ hexagonal nanoplates (100 nm thick ²⁵ and 800 nm wide) prepared by a solvothermal method in a H₂O-PEG binary solvent.^[112] Compared with LiFePO₄ hexagonal microplates (300 nm thick and 3 mm wide), carbon coated LiFePO₄ nanoplates exhibited the calculated Li-ion diffusion coefficient of 4.2×10^{-9} cm²·S⁻¹ instead of 2.2×10^{-9} cm²·S⁻¹, and
- ³⁰ delivered a discharge capacity more than 155 mAh·g⁻¹ instead of 110 mAh·g⁻¹ at 0.1 C. Particularly, LiFePO₄/C nanoplates could performed a high discharge capacity of 87 mAh·g⁻¹ at 60C (i.e., fully discharged within 30 s), when the content of conductive carbon was increased to 30 wt.%.
- Recently, Balaya and co-workers^{[113],[114],[115]} employed a solvothermal method to control crystal growth orientation along the a-c plane and reduce the b-axis to the smallest possible thickness. As shown in Fig.6g and 6h, the thickness along the baxis of LiFePO₄ nanoplates is found to be 30-40 nm, while the
- ⁴⁰ thickness along a-c plane is in the range 500-800 nm. The selected area electron diffraction (SAED) pattern viewed along [010] (i.e., b-axis) reveals that the plate is a single crystal with the b-axis along the thinnest direction. It is indicated that the smallest dimension of the nanoplates is the b-axis, which is propitious to
- ⁴⁵ diffusion of the Li-ions.^[112] The as-obtained LiFePO₄/C nanoplates could store Li-ions comparable to its theoretical capacity of 87 mAh·g⁻¹ at 0.1C. Even at 30C, they could delivered discharge capacity up to 87 mAh·g⁻¹. All the results revealed that the excellent high rate performance of LiFePO₄
- ⁵⁰ nanoplates is ascertained to the relatively thin thickness along the b-axis and large (101) surface area. In other words, size reduction (similar to 30 nm) at the b-axis and crystal growth orientation along the a-c plane could provide fast Li-ion diffusion. Moreover, uniform carbon coating (similar to 5 nm) throughout the LiFePO₄ ⁵⁵ nanoplates favors electronically conducting path for electrons.

3.1.2 Nano-sized LiFePO₄ particles

To date, the most widely adopted strategy to improve the rate capability is to use LiFePO₄ structures with smaller sizes and

coat the structures with carbon to improve the electronic 60 conductivity.^[108] Particularly, nano-structured LiFePO₄ particles are in favor of reducing the 1D diffusion length and advantageous for Li-ions transport, as the intrinsic diffusion constant is scale dependent and significantly reduced at large particle size.^[45] Various carbon-modified LiFePO4 nanostructures have been 65 studies, such as nanoparticles, nanorods, nanoflowers, porous microspheres, nanoplates, nanowires/fibers, template mesoporous materials, etc.^[116] Smaller structures mean shorter diffusion path for Li-ion and hence better utilization of the active materials.[117] For example, assuming that for a certain time Li-ion can diffuse ⁷⁰ 50 nm within LiFePO₄ lattices, if the electrode is made of a single crystal LiFePO₄ film with a thickness of 1 mm, then only the 50 nm on the surface can be utilized. However, if the electrodes are made of nanoparticles below 100 nm diameters and proper electrolyte wrapping and electron conduction is ensured, the 75 entire nanoparticle and hence electrode materials can be utilized.^[118] This is why nanosized materials are favored for high specific capacity and high rate capability.^{[119],[120]} As discussed above, at a high charge/discharge rate, less time is allowed for the ion diffusion. Consequently, nanostructures maintain a better 80 capability for complete "reactions" with Li-ion within a short time. These nano-sized LiFePO₄ materials could provide short diffusion length, give better rate performances than bulk materials because of smaller diffusion length, and be beneficial

for Li-ion batteries, as shown in Fig.8a. Ball milling method is usually employed to synthesize nano-85 sized LiFePO₄/C composite. It is found that LiFePO₄/C from ball milling in acetone displayed spherical shape with a size of 60 nm, similar to the size of LiFePO₄/C observed from dry ball milling (DBM) but with a more irregular morpholog.^[121] Although the 90 LiFePO₄/C nanocomposites prepared from wet ball milling (WBM) in acetone and DBM exhibited the similar discharge capacities of 153 mAh g⁻¹ and 120 mAh g⁻¹ at rates of 0.1C and 10 C, respectively (Fig.9a), the previous sample performed much lower polarization resulting in high energy density. A core-shell 95 structured LiFePO4/C nanocomposite was also successfully designed and prepared by Zhou's group.^[122] An in-situ polymerization restriction method was firstly used for the synthesis of FePO₄/PANI. Then a highly crystalline LiFePO₄ core was formed with a size of about 20-40 nm, and the polymer shell 100 was transformed into a semi-graphitic carbon shell with a thickness of about 1-2 nm during the heat treatment process at 700 °C, as shown in Fig.8b. The as-obtained LiFePO₄/C performed excellent rate performance. Even at the high rate of 60C, it still delivered a capacity of 90 mAh·g⁻¹. Additionally, ¹⁰⁵ Cho's group^[123] reported LiFePO₄ nanowires were synthesized using the two-dimensional hexagonal SBA-15 silica as hard template. The LiFePO4 nanowires delivered excellent rate performance. Even at 10C and 15C, The LiFePO₄ nanowires showed 144 mAh g⁻¹ and 137 mAh g⁻¹ respectively, 110 corresponding to 93% and 89% capacity retention of the initial capacity.

Taniguchi's group^[124] employed a combination technique of spray pyrolysis (SP) with WBM to prepared LiFePO₄/C nanoparticles. It is found that the LiFePO₄/C nanoparticles ¹¹⁵ processed a geometric mean diameter of 146 nm. A thin carbon layer provided LiFePO₄ excellent electrochemical performance, because LiFePO₄ nanoparticles exhibited an extremely high stability with the carbon coating.^[125] The LiFePO₄/C showed 118 mAh·g⁻¹ and 105 mAh·g⁻¹ at 10C and 20C, respectively. Even at 60C, the LiFePO₄/C also performed 75 mAh·g⁻¹ without capacity foding after 100 analog. Amoginally, Codor's group.^[126] found

- ⁵ fading after 100 cycles. Amazingly, Ceder's group^[126] found LiFe_{1-2y}P_{1-y}O_{4- δ}/C (y=0.05) nanoparticles prepared by WBM in acetone exhibited outstanding high rate performance. The LiFe_{0.9}P_{0.95}O_{4- δ}/C off-stoichiometry nanoparticles showed a specific discharge capacity of 163 mAh·g⁻¹ and mAh·g⁻¹ at 10C
- ¹⁰ and 20C respectively. Significantly, the specific capacity still remains above 120 mAh g^{-1} at a discharge rate as high as 197 C, when changing the woring electrodes fabrication of active material, carbon black and binder in a weight ratio of 80:15:5 to 30:65:5. This result is a remarkable progress over previous
- 15 studies. This presents a new direction on the improvement of LFP cathode performances, although more work are needed to further improve the repeatability and mechanism understandings of this method.

3.1.3 Three-dimensional porous architectures with

20 micro-nano structures

3D porous LiFePO₄ materials not only enhance surface-tovolume ratio and reduce Li-ion transport length, but also offer a potential solution to reduce interfacial energy and agglutinant in electrode, all of which are much better than those measured for ²⁵ the nano-sized LiFePO₄ and hollow micro-spherical LiFePO₄ (Fig.8c), improve the electrochemical performance and practical applications of LiFePO₄.^{[123],[127]} Particularly, LiFePO₄ cathodes with 3D porous architectures, spherical architectures, and micronano-structures have been extensively and intensively studied for ³⁰ high powerful LIBs. With the aid of template technology, a variety 3D porous LiFePO₄ materials have been synthesized.^{[128],[129],[130]} In 2013, Zhang's group^[131] successfully prepared 3D mesoporous LiFePO₄ using Baker's yeast cells both

as a structural template and a biocarbon source. The as-obtained ³⁵ LiFePO₄ exhibited a high discharge capacity of about 153

mAh·g⁻¹ at 0.1 C.
Besides the soft template, Li₃PO₄/graphene oxide (GO) microspheres are also employed as sacrificial templates to synthesized porous LiFePO₄/graphene microspheres.^[132] The as40 obtained LiFePO₄/graphene microspheres (2 μm) were assembled by nanoparticles and wrapped by graphene nanosheets. The graphene has been proved an advantage for EES application on accont of the superior electrical conductivities and high surface

area. Moreover, the porous microsperical structure exhibited an ⁴⁵ effective way to achieve high power density for LiFePO₄. The asobtained LiFePO₄/graphene performed excellent rate performance, i.e., 101.8 mAh·g⁻¹ at 10C, which hold 72% of the initial capacity at 0.1 C, as shown in Fig.9b.

Without employing templates, hydrothermal synthesis

- ⁵⁰ (HTS) as a low-temperatured liquid phase thermal (LPT) synthesis has also been employed to prepare 3D porous LiFePO₄ microspheres. In the HTS process, the LiFePO₄ precursor nanoparticles precursor particles deposit on account of their small solubility in the solution. Then, the nano-sized LiFePO₄ precursor
- ⁵⁵ particles self-assemble to form densely packed microspheres necessary for reducing the surface tension of the dispersed particles. Subsequently, with a dissolution-deposition process, the

agglomerated LiFePO₄ precursors evolve into 3D porous microspheres.^[133] The HTS performs lots of advantages such as 60 simplicity, morphology control, homogeneous particle size distribution, and low cost.^{[134],[135]} In 2010, Gao's group^[133] first prepared 3D porous LiFePO₄ microspheres consisting of nanoparticles by the hydrothermal process. These LiFePO4/C microspheres exhibited high Brunauer-Emmett-Teller (BET) 65 surface areas of 38.6 m²·g⁻¹ and delivered excellent high rate capability of 115 mAh·g⁻¹ at 10C. Even at 20C and 30C, they performed 93 mAh·g⁻¹ and 71 mAh·g⁻¹ respectively. In 2011, Goodenough's group^[92] successfully accomplished the selfassembly of LiFePO₄ nanoplates for the porous microspheres 70 using STS route, as shown in Fig.8e. It can be seen that the 3D porous LiFePO₄/C microspheres (1-3 µm) consist of nanoplates (80 nm), which interweave together forming a flowerlike structure giving a high BET surface area of 32.9 m² g⁻¹. The asobtained flowerlike LiFePO4/C microspheres exhibited discharge $_{75}$ capacity of 72 mAh·g⁻¹ at 10C. Due to the conductive ploymer PPy prossessing macromolecule sp²-type carbon, The LiFePO₄/(C+PPy) performed excellent rate performance, e.g., high discharge capacity of 92 mAh·g⁻¹ at 10C. Additionally, Eom's group and Kwon's group^[136] provided a growth 80 technology to synthesize porous and coarse LiFePO4/C composites (5-10 µm) using LiFePO₄ nanoparticles (100-200 nm) as seed crystals for the 2nd crystallization process, as shown in Fig.8d. The SEM and TEM images of LiFePO₄/C composites were shown in Fig.8d. The as-obtained 3D porous LiFePO4/C ⁸⁵ composites deliverd discharge capacity of 100 mAh·g⁻¹ at 10C, which is 65 % of the discharge capacity at 0.1 C. All the excellent rate performance strongly fulfill the requirements of rechargeable lithium batteries for high power applications.

It is worth noting that a versatile spray drying methodology ⁹⁰ is usually employed to prepare 3D porous spheres with micronano-superstructures.^[137] Zhang's group^[138] reported a novel and simple template-free concept and synthesis of 3D porous LiFePO₄/C microspheres via a sol-gel-spray drying (sol-gel-SD) method. As shown in Fig.8f-8i, it is clearly can be seen that the 95 as-obtained LiFePO₄/C had a large specific surface area of 20.2 $m^2 g^{-1}$, an average nano-size of 32 nm and a main pore diameter of 45 nm. The as-obtained 3D porous LiFePO₄/C microspheres easily contact with electrolyte, which facilitated the Li-ion diffusion, gave a high coulombic efficiency of 97.2%, and 100 presented an excellent capacity retention rate close to 100% after 50 cycles. However, it only gave 100 mAh g^{-1} at the high rate of 10C, due to less carbon coating and low porosity.^[139] When using citric acid as carbon source, 3D porous LiFePO₄/C microspheres have been successfully synthesized.^{[140],[141]} Polyvinyl alcohol 105 (PVA) gel has been also chosen as carbon source for its excellent film-forming properties in spray drying process.^[142] The carbon layers transformed from carbon sources were well coated around LiFePO₄ and showed excellent cyclability and superior rate capability.

110 3.2 Low temperature performance

LiFePO₄ cathode with excellent power output makes it a superior candidate for HEV and EV applications. However, one key challenge is the poor low temperature performances due to LiFePO₄ itself and the electrolyte in LiFePO₄-based batteries, as ¹¹⁵ compared to the performances at room temperature. In 2013,

Shin's group^[143] found that pristine LiFePO₄ exhibited a higher cycling stability at lower operating temperature of -20 °C than room temperature. It is suggested that LiFePO₄ process the much milder degradation of the surface and the bulk at low ⁵ temperature. To date, LiFePO₄ itself and the electrolyte have

- been both responsible for the poor low-temperature performance, which is the key challenge for the wide application of $LiFePO_4$ in EES devices.^[144]
- Generally, carbon coating is used to improve the electron ¹⁰ conductivity of the electrodes. The processes are associated with electron conductions.^{[27],[145]} A good electronic conductivity is of crucial importance to facilitate electron conduction and achieve high performances.^{[146],[147]} Carbon is a common low-cost material with good conductivity and is widely used for ¹⁵ conductivity improvement. Carbon layers can be facilely coated on the nanostructure surfaces by many low-cost and scalable methods, such as organic chemical polymer coating and annealing.^[148] Carbon coating is quite successful in improving the
- cathode conductivity, but the weight ratio of carbon has to be ²⁰ carefully controlled.^{[149],[150]} To be extreme, a cathode made of pure carbon will simply turn the battery into a double-layer supercapacitor, which has very low energy density and unstable output voltage. Higher carbon content also results in lower volumetric energy density due to the smaller mass density of
- ²⁵ carbon. Apart from the enhancement of conductivity, carbon also serves as capping material that can effectively reduce the particle growth during crystallization processes. Simultaneously, the reducing atmosphere of carbon also prevents the oxidation of Fe(II) during high temperature annealing.
- In 2011, Tu's group^[151] successfully prepared carbon-coated LiFePO₄ materials using polystyrene (PS) spheres (50-300 nm) as carbon source. The results illustrated that the LiFePO₄/C with 3.0 wt% carbon content performed excellent electrochemical capability at low temperature of -20 °C, which delivered 147
- ³⁵ mAh·g⁻¹ and 79.3 mAh·g⁻¹ at 0.1C and 1C respectively (Fig.10). Even after 100 cycles at 1C, the LiFePO₄/C still exhibited almost 100% capacity retention. It can be attributed to the optimal carbon coating thickness (2.5 nm) and good carbon coating morphology. Using citric acid as a carbon source, Wang's
- ⁴⁰ group^[152] reported a kind of 3D LiFePO₄/C microspheres. The electronic conductivity of LiFePO₄/C microspheres is between 7.5×10^{-2} and 10^{-1} S·cm⁻¹ from -40 °C to 23 °C, which gave attractive low temperature discharge capacity of 110 mAh·g⁻¹ and 64 mAh·g⁻¹ at -20 °C and -40 °C. Alternatively, Scrosati's group
- ⁴⁵ and Sun's group^[153] provided double-carbon-coated LiFePO₄/C porous microspheres, with a excellent specific discharge capacity of 70 mAh g⁻¹ (1C) at -20 °C. Additionally, polyacene (PAS) was also employed to optimize LiFePO₄.^[154] The as-obtained LiFePO₄/PAS microspheres performed outstanding discharge
- ⁵⁰ capacity of 88 mAh g⁻¹ at 1C at the lowtemperature of -20 °C. This favorable electrochemical performance is attributed to the homogeneous morphology, the small particles inside, the porous surface, and the conductive PAS (8.5 wt.%).

Besides coating conductive carbon, metal ion doping is so another common method to improve the conductivity of the LiFePO₄. Various metal dopants have been studied, such as Mg^{2+} , Al^{3+} , Cr^{3+} , Ti^{4+} , Zr^{4+} , Nb^{5+} , W^{6+} , etc. Metal dopant will replace the Li⁺ (M1 doping) or Fe²⁺ (M2 doping) in LiFePO₄ lattice to generate *n*-type semiconductor. ^[37] The conductivity can be ⁶⁰ enhanced by over seven orders of magnitude after doping. It was believed that the dopants replaced metal ions in LiFePO₄ lattice, could enhance the electronic and ionic conductivity.^[24] In 2011, Liao's group^[155] optimized LiFePO₄ by slight Mn-substitution. The as-obtained LiFe_{0.98}Mn_{0.02}PO₄/C delivered 99.8 mAh·g⁻¹ ⁶⁵ (1C) at -20 °C, which is superior to 90.7 mAh·g⁻¹ for LiFePO₄/C. Even at the low temperature of -40 °C, the LiFe_{0.98}Mn_{0.02}PO₄/C still gave 70.5 mAh·g⁻¹ at 1C.

Recently, mixtures of LiFePO₄ and Li₃V₂(PO₄)₃ (i.e., $xLiFePO_4+yLi_3V_2(PO_4)_3$, x > 0, y > 0) exhibited excellent 70 electrochemical performance and have recently attracted much attention.^{[156],[157]} Chen's group^[144] found that LiFePO₄/C delivered only discharge capacity of 45.4 mAh \cdot g⁻¹ (0.3C) at -20 °C, being 31.5% of the capacity obtained at 23 °C. Compared with LiFePO₄/C, the Li₃V₂(PO₄)₃/C could give discharge capacity $_{75}$ of 108.1 mAh·g⁻¹ (0.3C) at -20 °C, which 86.7% of the capacity at 23 °C. It is found that the activation energies of LiFePO₄ and $Li_3V_2(PO_4)_3$ are calculated to be 47.48 kJ·mol⁻¹ and 6.57 kJ·mol⁻¹ ¹, respectively. The Li-ion transform in Li₃V₂(PO₄)₃ is much easier than in LiFePO₄. Recently, many mixtures of LiFePO₄ and $_{80}$ Li₃V₂(PO₄)₃ have been studied and given excellent rate performance, such as 100 mAh·g⁻¹ at 10 C for 2LiFePO₄/C+Li₃V₂(PO₄)₃/C,^[159] 116.8 mAh·g⁻¹ at 10 C for 3LiFePO₄/C+Li₃V₂(PO₄)₃/C,^[159] 114 mAh·g⁻¹ at 10 C for 5LiFePO₄+Li₃V₂(PO₄)₃,^[160] 93.3 mAh·g⁻¹ at 10 C for 85 9LiFePO₄/C+Li₃V₂(PO₄)₃/C.^[161] However, up to now, the low temperature performance has still been rarely reported. It is worthwhile to examine the influence of the combination of LiFePO₄ and Li₃V₂(PO₄)₃ on the performance of Li-ion battery, and the low temperature of LiFexV2/3-2x/3PO4/C (0<x<1) solid 90 state materials.

Electrolyte is another main reason in addition to LiFePO₄ itself. The main reason might be the poor performances of conventional LiPF₆/EC+DMC+EMC electrolyte system at low temperature. The electrolyte becomes more viscous at low 95 temperature, resulting in a low diffusion coefficient of lithium ions in the electrolyte. Performance degradation can be expected since fast Li-ion diffusion (i.e., shorter intercalation time and better utilization of the active material) is of crucial importance for high performance cathodes. The inherent properties of olivine 100 LiFePO₄ might also contribute to the degradations but it is less likely to be the main reason. In the near future, more efforts are need to improve the low temperature performances. Huang's group^[35] reported that LiPF₆ salt in EC (the high feezing point of 36.4 °C) easily lead to poor Li-ion diffusion at low temperature, 105 particularly below -20 °C. Thus, exploration of novel electrolyte systems with superior low temperature properties might be a promising research direction. The viscousity increase of the electrolyte at low temperature may be the reason.^[27] Ma's group^[162] provided 1.0 M LiPF6/EC+DMC+DEC+EMC (1:1:1:3, ¹¹⁰ v/v) electrolyte. LiFePO₄/C composite could perform 90 mAh g^{-1} and 69 mAh·g⁻¹ at -20 °C and -40 °C respectively. Moreover, Zhang's group^[163] found that LiFePO₄/C composite could operate over a wide temperature range (-50 to 80 °C) using new lithium salts LiBF₄-LiBOB in a solvent mixture of PC+EC+EMC (1:1:3). 115 Although LiBOB-based electrolyte has high conductivity above -

10 °C and high temperature performance even up to 90 °C, but it

fails to perform below -40 °C. Fortunately, the mixture of LiBF₄ and LiBOB help the electrolyte process a large working temperature range from -50 °C to 90 °C due to high conductivity of LiBF₄ below -10 °C. With the help of LiBF₄-LiBOB-based 5 electrolyte, LiFePO4 delivered 62 mAh·g⁻¹ and 43 mAh·g⁻¹ even at -40 °C and -50 °C.

3.3 Volumetric energy density

High volumetric energy density of batteries can make the batteries smaller in volume while exhibiting the same ¹⁰ performances.^{[35],[149]} Compared with mass density (5.1 g·cm⁻³) of the dominant LiCoO₂ cathode materials, the theoretical density of LiFePO₄ is only 3.6 g·cm⁻³.^[164] However, the tap density of LiFePO₄ usually lies in the range of 0.8-1.5 g·cm⁻³, which seriously limits the volumetric energy density and becomes one ¹⁵ main obstacle preventing LiFePO₄ to scale commercial

- application.^{[35],[165]} Optimizing particle morphology and distribution has proven to be helpful for superior performance. Absolutely, spherical architecture of LiFePO₄ is preferred to optimize the tap density. Compared with irregular particles,
- ²⁰ spherical LiFePO₄ particles can decrease vacant space between the particles and improve fluidity of the particles. Furthermore, less binder (polyvinylidene fluoride (PVDF) or PTFE) can be stuck to spherical LiFePO₄ particles in fabricating the cathode film, which can enhance the volumetric energy density. In
- ²⁵ addition, the coating carbon with a density of 2.2 g·cm⁻³ consumes the volumetric energy density while enhancing gravimetric energy density efficiently.^[27] Thus, it is imperative to consider the weight ratio and optimized the balance to get a high gravimetric energy density without sacrificing the volume energy ³⁰ density for LIBs.

coprecipitation method,^[166] Recently, molten-salt method.^[167] HTS method.^[168] and microwave assisted water-bath reaction (MW-WBR)^[169] have been employed to prepare $LiFePO_4$ with high tap density, as shown in Table 2. 35 Coprecipitation method (including controlled crystallization method) is considered as one of the most versatile technique to produce spherical LiFePO₄ particles. Firstly, spherical amorphous FePO₄·xH₂O powders are prepared by coprecipitation method. Ying's group^[166] adopted a reactor (Fig.11a) to prepare 40 microspherical amorphous FePO₄ xH₂O powders (Fig.11b) with 8 μm by controlled crystallization method following the reaction: $Fe(NO_3)_3 + H_3PO_4 + 3NH_3 + xH_2O = FePO_4 \cdot xH_2O + 3NH_4NO_3$. It was found that the pH value should be fixed on 2.1, avoiding the hydrolyzation of PO₄³⁻ into HPO₄²⁻ and H₂PO₄⁻ as the solution's 45 pH decreases, and protecting the Fe³⁺ from hydrolyzing to $Fe(OH)_2^+$, $Fe(OH)_2^+$ and $Fe(OH)_3$ when the solution's pH increases. Secondly, the Li source, carbon source and some doping element were added with FePO4 xH2O and then heat treated at the high temperature. Ying's group^[166] synthesized 50 spherical Li_{0.97}Cr_{0.01}FePO₄/C (Fig.11c) with a tap density of 1.8 g/cm³, which is superior to 1.37 g·cm⁻³ prepared by ball milling.^{[170],[171]} and similar to 1.82 g cm-3 synthesized by secondary ball milling method.^[172] The Li_{0.97}Cr_{0.01}FePO₄/C composite exhibited 163 mAh g⁻¹ at 0.005C, but had low 55 discharge capacity 142 mAh·g⁻¹ at 0.1C and unsatisfactory rate capability 110 mAh g⁻¹ at 1C (Fig.12a), with corresponding

solid $Li_{0.97}Cr_{0.01}FePO_4$ microsphere, which contacted poorly with 60 electrolytes, as shown in Fig.8a.^[138]

In order to get a high gravimetric energy density and tap density simultaneously, conductive polymer PAS was employed to improve the rate capability of LiFePO₄ using controlled crystallization method.^[154] They prepared LiFePO₄/PAS with a 65 tap density of 1.6 g·cm⁻³, which exhibited rate capability of 129 mAh g⁻¹ and 97 mAh g⁻¹ at 1C and 5C respectively, corresponding to volumetric discharge capacity of 206.4 mAh cm⁻³ and 155.2 mAh cm⁻³ at 1C and 5C respectively. In 2010, Sun's group and co-workers^[173] prepared spherical ⁷⁰ LiFePO₄/C using polyvinylpyrrolidone (PVP) as a carbon source with particle size of $6\mu m$ and high tap density of 1.6 g cm⁻³. The as-obtained LiFePO4/C performed discharge capability of 132 mAh g^{-1} (211.2 mAh cm^{-3}) and 108 mAh g^{-1} (172.8 mAh cm^{-3}) at 1C and 5C respectively. Zhang's group^[174] improved carbon 75 content of LiFePO₄/C to 7.0 wt.% and synthesized the LiFePO₄/C with the high tap densigy of 1.8 g·cm⁻³ by coprecipitation method using self-produced high-density FePO₄ pressure-filtrated at 20 MPa (Fig.11e). Due to the denser structure, the LiFePO₄/C delivered volumetric discharge capability of 300.6 mAh cm⁻³ at 80 0.1C. Even at 1C and 5C, the LiFePO₄/C also exhibited high capacities of 257.4 mAh cm⁻³ and 176.9 mAh cm⁻³, respectively.

To further improve the high rate performance, 3D porous spongelike LiFePO₄/C particles with high tap density of 1.5 g/cm³ were successfully prepared by the coprecipitation method 85 using pitch as carbon source (Fig.11d).^[175] Although each spongelike LiFePO4/C particle with micron size of 6µm consisted of nanoscale 200-300 nm primary LiFePO4/C particles, the spongelike LiFePO4/C particle gave volumetric discharge capacity of 214.5 mAh cm⁻³ and 186.0 mAh cm⁻³ at 1C and 5C 90 respectively, which is 2.5 times than that of nano-sized LiFePO₄/C with the tap density of 0.6 g cm⁻³. In 2010, double carbon coating (sucrose and pitch as carbon source) was employed to synthesized LiFePO4/C, which processed a tap density of 1.5 g cm⁻³ and gave volumetric discharge capacity of 95 225.0 mAh cm⁻³ and 193.5 mAh cm⁻³ at 1C and 5C.^[153] Even at 10C and 20C, the LiFePO4/C delivered 116 mAh·g⁻¹ (174.0 mAh·cm⁻³) and 79 mAh·g⁻¹ (118.5 mAh·cm⁻³), respectively.

In addition to coprecipitation method, Zhou' group^[167] prepared microspherical LiFePO₄ with a tap density of 1.55 g cm⁻ ¹⁰⁰ ³ via a molten-salt method, which showed accelerated reaction rate and controllable particle morphology. However, the LiFePO₄ product delivered low capacity of 130.3 mAh g⁻¹ (201.5 mAh cm⁻¹ ³) at 0.1C due to the large amounts of inert LiFePO₄ at the heart of the solid LiFePO₄ microsphere.^[138] In 2011, quasi-¹⁰⁵ microspheres of LiFePO₄/C composed of many densely compact nanoplates (with 100 nm size and 30 nm thickness) were synthesized by Zhang's group (Fig.11f).^[168] Due to the nanoplates assembled quasi-microspherical FePO₄·2H₂O precursors via hydrothermal process, the as-obtained LiFePO4/C 110 quasi-microspheres possessed a tap density of 1.4 g cm⁻³ and showed excellent high rate performance. Even at 30C current rate, the discharge capacities can reach 75 mAh g⁻¹ (105 mAh cm⁻³). In 2014, Kim's group^[176] successfully prepared 3D porous LiFePO₄ microspheres with a high tap density of (1.7 ¹¹⁵ g cm⁻³) using a spray drying (SD) method. The as-obtained 3D porous LiFePO₄ microspheres with the carbon content of 3.3%

volumetric discharge capacity of 198 mAh cm⁻³ (Fig.12b). This is

due to large amounts of inert Li_{0.97}Cr_{0.01}FePO₄ at the heart of the

delivered a high initial discharge capacity of 160 mAh \cdot g⁻¹ (272 mAh \cdot cm⁻³) at 0.1C, corresponding to 94% of the theoretical capacity, as shown in Fig.12.

- Interestingly, MW-WBR method was employed to s synthesize spherical LiFePO₄/C with quite a high tap density of 2.0 g·cm⁻³, which will strongly benefit the enhancement of volumetric energy density (Fig.11g).^[169] This spherical LiFePO₄/C exhibited high tap density superior to 1.0 g·cm⁻³ (Tianjin Sterlan-Energy Ltd. China), 1.4 g·cm⁻³ (Phostech lithium
- ¹⁰ Inc., Canada), and 1.5 g·cm⁻³ (Valence Technology Inc.,US).^[174] Furthemore, the spherical LiFePO₄/C performed excellent discharge capacity of 131 mAh·g⁻¹ (262.0 mAh·cm⁻³) and 105 mAh·g⁻¹ (210 mAh·cm⁻³) at 1C and 5C, respectively.

4 Synthetic reaction mechanism

15 4.1 Carbothermal reduction method

Recent synthesis approaches and equipments towards cathode material LiFePO₄, such as solid phase thermal (SPT) routes and liquid phase thermal (LPT) routes.^{[177],[178]} It is well known that carbothermal reduction (CTR) method is one of the ²⁰ promising SPT methods. CTR method is considered as an effective approach to improving electrochemical performance of

- LiFePO₄ materials.^{[127],[179]} CTR method not only gives special environment favorable for the reduction of Fe(III) and the formation of the LiFePO₄/C material, but also provides the ²⁵ continuous conductive carbon film as electron conductor
- enhancing the electronic conductivity of LiFePO₄.^[94] Moreover, the evenly distributed carbon can also prevent particle coalescence. Recently, CTR method has been defined as a feasible, low-cost and environmental-friendly method for ³⁰ fabrication of LiFePO₄/C composites and has been largely
- employed to synthesize high performance LiFePO₄/C composites. There are mainly two steps in CTR method. At the first step, carbon sources are evenly distributed in precursor aggregation
- using various routes, such as ball milling,^{[180],[181]} sol-gel,^{[182],[183]} so -precipitation,^{[184],[185]}, spray drying,^{[138],[186]} etc. Carbon sources include inorganic carbon (e.g., carbon black + surface activator), organic sucrose, small molecular acid (e.g., citric acid), big molecular polymer (e.g., PEG10000)^[187] and sp2tapyed carbon (e.g., carbon nanotube (CNT) and graphene).^{[188],[189]} At the second step, LiFePO₄/C is formed due to vigorous gas evolution (mainly CO and CO₂) during
- degradation and carbonization of the carbon sources. During heat treatment of appropriate precursor, elementary carbon is deposited on the walls of primary nanoparticles as a degradation ⁴⁵ product. Meanwhile, the continuous conductive carbon film can overcome the electronic and lithium-diffusion limitations, improve the rate of insertion/extraction and optimize the

electrochemical performance under high-current regimes. Noticeably, electrochemical performance of LiFePO₄/C

- ⁵⁰ material is influenced by various carbon sources and raw materials. Iron phosphides, such as FeP and Fe₂P, were reported to have effects on the improvement of the rate performance. Obviously, the impurities especially for Fe₂P easily appeared as by-products in the CTR synthetic process. It is difficult to control
- ss the content of Fe₂P, which has effects on the electrochemical performance of LiFePO₄. Why Fe₂P was synthesized by

carbothermal reaction at different temperature? What is noteworthy is that the phase of Fe₂P could take place in the following conditions, such as self-deoxidization reaction of $_{60}$ LiFePO₄/C composite, reducing agent iron nanoparticles, stoichiometric excess of Fe₂O₃. Moreover, the Fe₂P could also appear when using microwave assisted CTR (MW-CTR) method. In this part, we focus on synthetic reaction mechanism in CTR synthetic conditions.

65 4.1.1 Effects of Fe(II) and Fe(III) raw material sources

Usually, Fe(III) sources including FePO₄, Fe₂O₃, Fe(NO₃)₃ and Fe(NH₄)₂(SO₄)₂·6H₂O are employed to prepare LiFePO₄ via the CTR routes.^[190] In our previous research,^[94] it is found that 70 LiFePO₄/C can be strongly formed at around 450 °C by in-situ CTR method whether using various carbon sources except for inorganic carbon sources (postponed to 539 °C due to the preparation of Li₃Fe₂(PO₄)₃, as shown in Fig.13a and 13b), similar to the reports by Garbarczyk's group^[191] and Jiao's 75 Group^[192]. Self-deoxidation reaction of LiFePO₄/C takes place at 840 °C (Table 3), which was in accordance with the results of Wang's group.^[193] The crystallization of Fe₂P and Li₄P₂O₇ happens at 930 °C suggesting that severe decomposition of LiFePO₄/C. Normally, in-situ CTR synthetic temperature should so be carefully controlled below 840 °C to avoid the Fe₂P byproduct during the sintering process. However, it was found that suitable content of Fe₂P would improve the electrochemical performance of LiFePO₄. Kim's group^{[194],[195]} and Lee's group^[196] found that the Fe₂P content increased with increasing 85 carbon content at the temperature of 900 °C, as shown in Fig.13c. As the carbon content was above 12 wt%, a large amount of LiFePO₄/C disappeared and Fe₂P was predominantly produced.

Besides Fe(III) raw material source, FeC₂O₄ was generally employed as Fe(II) raw material source to synthesize LiFePO₄. It ⁹⁰ can be seen that the presence of Fe₂P appeared at 675 °C.^{[197],[198]} Zboril's group^[199] and Molenda's group^[200] found that reducing agents including α -Fe nanoparticles, magnetic Fe₃O₄ and Fe₃C could be obtained during the thermal decomposition of FeC₂O₄·2H₂O in a dry argon flow. These reducing agents ⁹⁵ especially for Fe particles could react with LiFePO₄/C and generate Fe₂P around 700 °C.^{[201],[202]} It was worth noting that iron phosphides increased with the increase of excessively stoichiometric iron source and the temperature.^{[203],[204]}

4.1.2 Reductive atmosphere of hydrogen

In addition to self-deoxidization reaction of LiFePO₄/C composite and reducing agents from Fe raw materials sources, reductive atmosphere of hydrogen also reduced LiFePO₄ to prepare Fe₂P at 600 °C according to the work of Nazar's group.^[99] The Fe₂P can be observed after the sintering process at 600 °C for 4 h in gas atmosphere of N₂/H₂=97/3 (vol.%) reported by Taniguchi's group.^{[205],[206]} Furthermore, the phase of FeP and Fe₃P could also be observed.^[207] Wohlfahrt-Mehrens's group^[208] studied various gas atmospheres and considered that some traces of Fe(III) could be confirmed when using Fe(II) raw sources but ¹¹⁰ not enough reductive additive (e.g. N₂/H₂=99/1 (vol.%), no carbon as reductive additive). According to the results, the authors suggested that a considerable amount of Fe₂P was generated as the hydrogen raised to 10 vol.%, as shown in

Fig.13d. The amount of Fe₂P would increase with the carbon addition. Additionally, it is important to note that LiFePO₄ will decompose into Fe₂P, Li₃PO₄, Li₄P₂O₇ and Li₃P₇ when the heating temperature reaches 850 °C under a stream of a gas $_{5}$ mixture of Ar/H₂=95/5 (vol.%).^[209]

4.1.3 Microwave assisted carbothermal reduction

method

Compared with conventional CTR method, MW-CTR method has recently attracted much attention.^[177] Microwave ¹⁰ irradiation (2.54 GHz) can provide "inert and instant heating", and exhibit outstanding superiority such as fast response, time effectiveness, low energy consumption, and environmentally benighity.^{[210],[211]} Moreover, microwave irradiation was also adopted to optimize the physical and electrochemical ¹⁵ performance of LiFePO₄.^[212] Under Ar atmosphere, Higuchi's group^[213] found that iron acetate acts as a microwave susceptor rather than iron lactate. The result illustrate that LiFePO₄ was successfully prepared using iron acetate as Fe sources at 500 W for 10min, whereas LiFePO₄ was not observed using iron lactate

- $_{20}$ as Fe raw sources even up to 30min. Furthermore, the microwave irradiation time has important effect on the Fe_2P by-products, which could increase with the increasing time due to the work of Kwon's group^[214] All the phases of LiFePO₄, Fe_2P and Li₄P₂O₇ were observed when the amount of Fe_2P is above 1.0 wt.%.^[215] In
- ²⁵ addition to Ar atmosphere, carbon materials and carbon sources were both employed to produce vigorous CO gas, which is curious for the preparation of LiFePO₄.^{[216],[217]} Thanks to this strategy, the electrochemical performance of LiFePO₄ was strongly improved by MW-CRT method using carbon ³⁰ coating,^[218] multi-walled CNTs (MWCNTs) doping,^[219] Mo and
- La doping.^{[220],[221]} However, it is worthwhile to note that most of the carbon could be consumed after extended heating treatment. The transformation from Fe(II) to Fe(III) would take place, leading to impurity phases of Fe₂O₃ and Li₃Fe₂(PO₄)₃.^{[222],[223]}
- ³⁵ Therefore, the microwave-derived and phase-pure LiFePO₄ without impurities could be successfully synthesized via MW-CTR method under the certain proper conditions.

4.2 Low-temperatured liquid phase thermal synthesis

- In addition to high-temperatured CTR method, the lowtemperatured LPT routes, such as HTS, STS and ionothermal synthesis (ITS), provided more effective pathways to synthesize LiFePO₄. HTS and STS are generally LPT synthetic methods, which exhibit lots of advantages including morphology control,
- ⁴⁵ homogeneous particle size distribution, relatively low temperature (≤300 °C), low cost and simplicity.^{[224],[225]} Recently, HTS and STS are both largely employed to prepare special morphologic LiFePO₄, such as crystalline growth, nanostructured LiFePO₄ and 3D porous LiFePO₄ architectures with
- ⁵⁰ micro-nano-structures (see section 3.1.1 in this article).^{[127],[226]} In order to improve traditional intermittent reactors for HTS and STS, Teja's group^[227] and Aimable's group^[228] designed the continuous hydrothermal synthesis, which poise great promise in practical industrial applications. Different form HTS (using water
- 55 as the main mineralizer) and STS (using organic solvents as main mineralizers), room temperature ionic liquids (RTILs) are

regarded as a novel class of mineralizer, which have been employed in ITS route to synthesize cathode materials especially LiFePO₄ with nano-structures.^{[229],[230],[231]} Moreover, microwave ⁶⁰ irradiation is expected to assist HTS, STS and ITS, due to energyand time-saving advantages of microwave. In this part, we focus on the effects of stoichiometric ratio of raw sources, pH values of solution, additive mediations (e.g., organic acids, surfactants and solvents), and microwave irradiation.

65 4.2.1 Stoichiometric ratio of raw sources

Usually, the crystalline powders of LiFePO₄ were synthesized by mixing amounts of the reactants LiOH, FeSO4 and H_3PO_4 in the stoichiometric ratio of $n_{I_1}:n_{Fe}:n_P = 3:1:1$, as shown in Table 4.^[232] Advisable addition of LiOH should be changed 70 with replacing the H^+ with NH_4^+ in H_3PO_4 . Kanamura's group^{[233],[234]} found that the stoichiometric ratio of 2.5:1:1 would be better when using (NH₄)₃PO₄ instead of H₃PO₄. The stoichiometric ratio of 1:1:1 and 2:1:1 were both appropriate for using (NH₄)₂HPO₄. As shown in Fig.14, Our group investigated 75 the products when using NH₄H₂PO₄ as PO₄³⁻ source. It can be seen that a large amount of Fe₃(PO₄)₂ H₂O as impurity was obtained in the case of x=1.0. As the x value changed into 1.5, more crystalline of LiFePO₄ was observed. The value of x=2.0 is obviously in favor of hydrothermal crystallization of pure ⁸⁰ LiFePO₄. The overmuch addition of LiOH (e.g., x=2.5 and 3.0) caused the impurity of Li₃PO₄. All the results strongly suggested that the addition of LiOH should be changed as the PO_4^{3-} source was changed. However, the stoichiometric ratio should be changed back to 3:1:1 when the other Li sources including LiCl 85 and CH3COOLi were used instead of LiOH.^{[235],[236]} It is noteworthy that LiFePO₄ with pure phase was also prepared by using other Fe(II) slats such as FeCl₂ and (NH₄)₂Fe(SO₄)₂ instead the stoichiometric ratio of FeSO₄. but remained unchanged.^{[237],[238]} Furthermore, the LiFePO₄ was also 90 successfully synthesized using fresh Fe₃(PO₄)₂ 5H₂O and Li₂PO₄.^[239]

Additionally, Whittingham's group^[240] suggested that the LiFePO₄ should only be obtained at neutral and slightly basic conditions. Fe disorder onto the Li sites (ca. 3.5%) generally ⁹⁵ happened at pH value of 6.30. Even the synthetic condition temperature below 175 °C, there would be some amounts of Fe on Li sites.^{[241],[242]} Moreover, the synthetic time also had effects on the LiFePO₄ nanocrystalline. In 2013, Ou's group^[243] found that the peak intensities of (020) X-ray diffraction line of LiFePO₄ nanoplates increased with the reaction time prolonging from 0 to 6 h. Meanwhile the relative peak intensities of (020) to (111) also increased, due to the result calculated from XRD patterns of LiFePO₄ nanoplates. All the results demonstrated that the LiFePO₄ nanoplates have a preferred crystal orientation with ¹⁰⁵ large (010) face, which is in favor of good electrochemical performance for LiFePO₄.^[244]

4.2.2 Additive mediations of organic acids,

surfactants and solvents

In addition to the synthetic temperature, residence time, ¹¹⁰ reactant concentration and pH value,^[245] additive mediations including organic acids, surfactants and solvents also have effects on the purity, morphology control and electrochemical performance of LiFePO₄.^[246] Firstly, organic acid not only effects pH value, but also can be used as reduction mediator. Whittingham's group^[247] provided that both of the reduction from Fe(III) into Fe(II) and the formation of the desired LiFePO₄ compound carried out with the addition of L-ascorbic acid. ⁵ Moreover, it was found that the pH value and reaction time

- played multifold roles in self-assembled mesoporous LiFePO₄ with hierarchical spindle-like architectures.^[248] When the value of pH increased from 7.0 to 10.0, primary nanocrystals disappeared and spindle-like hierarchical LiFePO₄ particles formed. The full
- ¹⁰ transformation from Li₃PO₄ to LiFePO₄ nanocrystal needs a reation time over 5 h. Furthermore, in the presence of organic acid, e.g. citric acid or ascorbic acid, well-crystallized LiFePO₄ nanoparticles have been directly synthesized.^[249] Chung's group and Grey's group^[250] successfully controlled the morphological
- $_{15}$ transformations of LiFePO4 particles during the hydrothermal reaction in the presence of citric acid and ammonium ions (NH^{4+}).

Secondly, organic surfactants or polymers including O,O-Bis(2-aminopropyl)polypropyleneglycol (D230),

- ²⁰ EO20PO70EO20(P123), cyltrimethylammonium bromide(CTAB), sodium dodecyl sulfate(SDS), poly(ethylene glycol) (PEG), *etc.*, have been successfully employed to control the particle growth and size distribution. The results from Nazar's group^[106] showed the particle size of LiFePO₄ became smaller
- ²⁵ and much more homogeneous compared to that of products using molecular reducing agents, if non-ionic surfactants, including pluronic P123 and Jeffamine D230 were added to the reactors. These years, Gerbaldi and his co-workers^{[251],[252],[253]} investigated the effects of organic surfactant compound CTAB on LiFePO₄
- ³⁰ characteristics and electrochemical behavior. It is clearly found that CTAB influences deeply during the synthesis and the electrochemical properties of LiFePO₄. Moreover, the CTAB micelles are beneficial for controlling the grain size and sucrface area. Additionally, nitrilotriacetic acid (NTA) surfactant has been
- ³⁵ also employed to synthesize LiFePO₄ nanowires.^[254] In 2010, Zhang's group^[168] used SDS to assist the synthesis of LiFePO₄ via hydrothermal process. The as-obtained LiFePO₄/C microspheres are composed of primary LiFePO₄/C nanoplates with the size of 100 nm and thickness of 30 nm. With the addition
- ⁴⁰ of SDS and Ethylenediamine (EN), our group successfully synthesized LiFePO₄/C microspheres assembled from nanorods, as shown in Fig.15c and 15d.

Thirdly, hybrids of water and organic solvents have been also employed in the STS route. In 2013, Liao's group^[255]

- ⁴⁵ successfully prepared high-performance LiFePO₄ microspheres consisting of nanofibers (Fig.15a) by a high pressure alcoholthermal approach in a water and 1,2-propanediol (PD) composite solvent. With the effect of the PD solvent, the LiFePO₄ crystalline nuclei were linearly elongated to form into nanofibers.
- ⁵⁰ The LiFePO₄ nanofibers aggregated together and formed LiFePO₄ microspheres. Tetraethylene glycol (TEG) has been also used as consolvent with water.^[111] As shown in Fig.15b, rectangular LiFePO₄ nanoplatelets were formed with a very thin thickness of 50-80 nm, favouring fast Li-ion diffusion. Moreover,
- ⁵⁵ PEG has been usually used to assist morphology control of LiFePO₄.^{[256],[257]} Meanwhile, Liu's group^[112] provided a water-PEG400 binary solvent to assist solvothermal method and prepare LiFePO₄ nanoparticles (50 nm in size), hexagonal nanoplates

(800 nm wide and 100 nm thick) and hexagonal microplates (3 60 mm wide and 300 nm thick).

Recently, RTILs have been also been used as the solvent and template to synthesize LiFePO₄. With this new and promising ITS method, Tarascon's group^{[178],[229]} enable LiFePO₄ crystalline growth with controlled morphology and size ⁶⁵ around 250 °C. As shown in Fig. 15g-i, large LiFePO₄ needles were assembled of Lego blocks. As shown in Fig.15e and 15f, Teng and co-workers^[258] successfully prepared LiFePO₄ nanorods in an ionic liquid in the presence of sodium dodecyl benzene sulfonate (SDBS) surfactant and ascorbic acid. Thus, ⁷⁰ super architectures with micro-nano-structured nanocrystals and morphology control with addition of organic acids, organic surfactants and organic solvents.

4.2.3 Microwave-assisted liquid phase thermal routes

Undoubtedly, microwave irradiation has been employed to ⁷⁵ assist LPT routes, because microwave irradiation assisted synthesis (MIAS) exhibited overwhelming superiorities such as heating the precursor volumely and quickly, efficient and suitable for large-scale synthesis for the practical application of electrode materials. In our prious work,^[177] we strongly review the MW-⁸⁰ LPT including MW-HTS,^{[259],[260]} MW-STS^[261] and MW-ITS.^[178] The Li-ion diffusion can be strongly improved by controlling morphology of LiFePO₄ via MW-LPT. Moreover, electronic conductivity can be optimized by coating conductive materials such as carbon^{[262],[263]}, CNT^{[264],[265]} and conductive polymer, ⁸⁵ e.g., Poly(3,4-ethylenedioxythiophene)(PEDOT).^[266]

5 Conclusion and perspective

In summary, the pathway of Li-ion diffusion in Li_xFePO₄ is mainly along the [010] direction. Sometimes, 2D Li-ion transport carries out along both the [010] and [001] directions at the 90 elevated temperature. Undoubtedly, the phase transformation of LiFePO₄ and FePO₄ are affected by various conditions, such as particle size, charge/discharge rate, temperature, etc. To date, many phase transformation models, including shrinking core (i.e., core-shell) model, Laffont's (i.e., new core-shell) model, mosaic 95 model, domino-cascade model, phase transformation wave model, and many-particle model, have been proposed to explain the lithiation/delithiation process and the phase transformation in Li_xFePO₄. However, these models are still in disagreement with each other. Generally, the two-phase transformation models can 100 be used to explain a two-phase growth process involving the coexistence of LiFePO₄ and FePO₄ for the large particle, below a critical current and at a relative low temperature. Simultaneously, the quasi-single-phase transformation models are dominantly used in the solid-solution reaction where Li_xFePO₄ particles do 105 not separate into Li-rich and Li-poor phases during lithiation/delithiation process.

In order to endow the LiFePO₄ with excellent electrochemical performance including high rate capability, and low temperature performance, reducing the pathway of Li-ion ¹¹⁰ diffusion, particularly [010] direction, is effective route. Usually, fast Li-ion diffusion is achieved by morphology controlling, such as crystal growth orinetation along the a-c plane, nano-sized morphologies and 3D porous architectures with micro-nano-structures. Meanwhile, the electronic conductivity is improved by

coating conductive materials, e.g., amorphous carbon, CNT, graphene, PAS, PPy, Fe₂P, *etc.* However, achieving both high rate performance and volumetric energy density is still a big challenge. Recently, carbon coated LiFePO₄ microspheres with a

- ⁵ highest tap density of 2.0 g·cm⁻³ has been successfully synthesized by MW-WBR method. It can deliver the outstanding discharge capacities of 93 mAh·g⁻¹ and 78 mAh·g⁻¹ even at 10 and 20 C respectively. This additional strategy provides a facile and novel route for preparing high tap density of LiFePO₄, and ¹⁰ holds the potential to be extended for the EES devices.
- In addition, it is noteworthy that synthetic reactions play an important role to imporve performance of LiFePO₄ cathodes. When using CTR method, the purity of LiFePO₄ is significantly affected by the Fe sources, carbon sources and the reductive
- ¹⁵ atmosphere. Obviously, the impurities particularly for Fe₂P are easily by-produced. To date, controlling the content of Fe₂P is still a major obstacle and issue, where the Fe₂P either provides the high conductive networks for LiFePO₄ or blocks the pathway of Li-ion diffusion. Low-temperatured LPT synthesis can be also
- ²⁰ employed to prepare LiFePO₄ with much reduced impurities. However, both the crystalline and electrochemical performance of LiFePO₄ still need to be enhanced by subsequent heat treatment. Intriguingly, on account of "inert and instant heating", MIAS can be used to assist both CTR route and LPT route. We

²⁵ believe that MIAS provides an extremely fficient and suitable route for large-scale synthesis of LiFePO₄ electrode material.

Acknowledgements

The authors highly acknowledge the authors and publications data of the original materials. We would like to ³⁰ thank Dr. Chaoyi Yan, Prof. Haibin Su (School of Materials Science and Engineering, Nanyang Technological University (MSE, NTU)) and Prof. Jianyi Lin (Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (ICES, A*STAR)) for their helpful discussions. This

- ³⁵ work was financially supported by Scientific Research Start-up Fund for High-Level Talents, Shihezi University (No. RCZX201305), the Doctor Foundation of Bingtuan (No. 2014BB004), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1161) and the
 ⁴⁰ Program of Science and Technology Innovation Team in
- Bingtuan (No. 2011CC001)

Notes and references

 ^a Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering,
 45 Shihezi University, Shihezi 832003, P.R. China. Email:

- yufeng05@mail.ipc.ac.cn (F. Yu) and daibin_bce@shzu.edu.cn (B. Dai).
 ^b Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Jurong Island 627833, Singapore.
 ^c Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of
- 50 Education, School of Pharmacy, Shihezi University, Shihezi 832002, P.R. China.
 - ^d Graphene & Energy Storage Technology Research Center, China Energine International (Holdings) Limited, Beijing 100176, P.R. China.
- ^e Engineering Research Center of Materials-Oriented Chemical 125
 ^{s5} Engineering of Xinjiang Production and Construction Corps, Shihezi 832003, P.R. China.

^f Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi 832003, P.R. China.

- K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, *Mater. Res. Bull.* **1980**, *15*, 783-789.
- [2] T. Nagaura, K. Tazawa, Progress in Batteries & Solar Cells 1990, 9, 209-217.
- [3] B. Xu, D. N. Qian, Z. Y. Wang, Y. S. L. Meng, *Mat Sci Eng R* 2012, 73, 51-65.
- [4] M. Wagemaker, F. M. Mulder, Accounts of Chemical Research 2013, 46, 1206-1215.
- 70 [5] J. Cabana, L. Monconduit, D. Larcher, M. R. Palacin, *Adv. Mater.* 2010, 22, E170-E192.
- [6] X. P. Gao, H. X. Yang, Energy & Environmental Science 2010, 3, 174-189.
- [7] M. R. Palacin, Chem. Soc. Rev. 2009, 38, 2565-2575.
- 75 [8] S. Chu, A. Majumdar, *Nature* **2012**, *488*, 294-303.
 - [9] J. M. Tarascon, M. Armand, *Nature* **2001**, *414*, 359-367.
 - [10] R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, J. Mater. Chem. 2011, 21, 9938-9954.
- [11] M. Wakihara, *Mat Sci Eng R* **2001**, *33*, 109-134.
- 80 [12] A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, *Nature Materials* 2005, *4*, 366-377.
 - [13] M. Gong, G. Wall, Exergy, An International Journal 2001, 1, 217-233.
- [14] K. Zaghib, A. Mauger, C. M. Julien, J. Solid State Electrochem. 2012, 16, 835-845.
- [15] J. B. Goodenough, Y. Kim, Chem. Mater. 2010, 22, 587-603.
 [16] M. S. Islam, C. A. J. Fisher, Chem. Soc. Rev. 2014, 43, 185-
- [10] M. S. Islam, C. A. J. Fisner, *Chem. Soc. Rev.* **2014**, 43, 185-204.
- [17] M. S. Whittingham, Chem. Rev. 2004, 104, 4271-4302.
- 90 [18] F. Yu, J. J. Zhang, C. Y. Wang, J. Yuan, Y. F. Yang, G. Z. Song, Progress in Chemistry 2010, 22, 9-18.
 - [19] Y. Gu, D. Chen, X. Jiao, *The Journal of Physical Chemistry B* 2005, 109, 17901-17906.
 - [20] K. Y. Chung, K. B. Kim, Electrochimica Acta 2004, 49, 3327-3337.
- J. Vetter, P. Novak, M. R. Wagner, C. Veit, K. C. Moller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, J Power Sources 2005, 147, 269-281.
- [22] A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, J. B. Goodenough, *J. Electrochem. Soc.* **1997**, *144*, 1609-1613.
- [23] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 1997, 144, 1188-1194.
- [24] S. Y. Chung, J. T. Bloking, Y. M. Chiang, *Nature Materials* 2002, 1, 123-128.
- ¹⁰⁵ [25] J. W. Fergus, J. Power Sources **2010**, 195, 939-954.
 - [26] C. A. J. Fisher, V. M. H. Prieto, M. S. Islam, *Chem. Mater.* 2008, 20, 5907-5915.
 - [27] Y. G. Wang, P. He, H. S. Zhou, *Energy & Environmental Science* 2011, *4*, 805-817.
 - M. S. Islam, P. R. Slater, *MRS Bull.* **2009**, *34*, 935-941.
 - [29] D. D. MacNeil, Z. H. Lu, Z. H. Chen, J. R. Dahn, J. Power Sources 2002, 108, 8-14.
 - [30] K. Zaghib, P. Charest, A. Guerfi, J. Shim, M. Perrier, K. Striebel, J. Power Sources 2004, 134, 124-129.
- 115 [31] S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. H. Ma, G. Ceder, *Energy & Environmental Science* 2011, 4, 3680-3688.
 - [32] W. J. Zhang, J. Power Sources 2011, 196, 2962-2970.

120

- [33] P. P. Prosini, M. Lisi, D. Zane, M. Pasquali, *Solid State Ionics* 2002, 148, 45-51.
- [34] D. W. Liu, G. Z. Cao, Energy & Environmental Science 2010, 3, 1218-1237.
- [35] L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang, J. B. Goodenough, *Energy & Environmental Science* 2011, 4, 269-284.
- [36] D. Morgan, A. Van der Ven, G. Ceder, *Electrochem. Solid State Lett.* 2004, 7, A30-A32.
- [37] M. S. Islam, D. J. Driscoll, C. A. J. Fisher, P. R. Slater, *Chem. Mater.* 2005, 17, 5085-5092.

95

120

140

- [38] C. Y. Ouyang, S. Q. Shi, Z. X. Wang, X. J. Huang, L. Q. Chen, Physical Review B 2004, 69, 104303.
- [39] X. F. Ouyang, M. L. Lei, S. Q. Shi, C. L. Luo, D. S. Liu, D. Y. Jiang, Z. Q. Ye, M. S. Lei, J. Alloys Compd. 2009, 476, 462-465.
- [40] S. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, A. Yamada, Nature Materials 2008, 7, 707-711.
- J. J. Yang, J. S. Tse, J. Phys. Chem. A 2011, 115, 13045-[41] 13049
- 10 [42] J. B. Goodenough, J. Power Sources 2007, 174, 996-1000.
- [43] M. Park, X. C. Zhang, M. D. Chung, G. B. Less, A. M. Sastry, J. Power Sources 2010, 195, 7904-7929.
- J. Y. Li, W. L. Yao, S. Martin, D. Vaknin, Solid State Ionics [44] 2008, 179, 2016-2019.
- R. Malik, D. Burch, M. Bazant, G. Ceder, Nano Lett. 2010, 10, 15 [45] 4123-4127.
- [46] B. L. Ellis, K. T. Lee, L. F. Nazar, Chem. Mater. 2010, 22, 691-714
- R. Amin, J. Maier, P. Balaya, D. P. Chen, C. T. Lin, Solid [47] State Ionics 2008, 179, 1683-1687.
- [48] B. Ellis, L. K. Perry, D. H. Ryan, L. F. Nazar, J. Am. Chem. Soc. 2006, 128, 11416-11422.
- [49] G. K. P. Dathar, D. Sheppard, K. J. Stevenson, G. Henkelman, Chem. Mater. 2011, 23, 4032-4037.
- 25 [50] V. Srinivasan, J. Newman, J. Electrochem. Soc. 2004, 151, A1517-A1529.
- [51] L. Laffont, C. Delacourt, P. Gibot, M. Y. Wu, P. Kooyman, C. Masquelier, J. M. Tarascon, Chem. Mater. 2006, 18, 5520-5529
- A. S. Andersson, B. Kalska, L. Haggstrom, J. O. Thomas, 100 30 [52] Solid State Ionics 2000, 130, 41-52.
- [53] A. S. Andersson, J. O. Thomas, J. Power Sources 2001, 97-8, 498-502
- C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, F. Weill, [54] Nature Materials 2008, 7, 665-671. 35
- [55] R. Dedryvere, M. Maccario, L. Croguennec, F. Le Cras, C. Delmas, D. Gonbeau, Chemistry of Materials 2008, 20, 7164-7170
- D. Burch, G. Singh, G. Ceder, M. Z. Bazant, in Theory, [56] Modeling and Numerical Simulation of Multi-Physics 110 Materials Behavior, Vol. 139 (Eds.: V. Tikare, G. E. Murch, F. Soisson, J. K. Kang), 2008, pp. 95-100.
- [57] G. K. Singh, G. Ceder, M. Z. Bazant, Electrochim. Acta 2008, 53, 7599-7613.
- W. Dreyer, J. Jamnik, C. Guhlke, R. Huth, J. Moskon, M. 115 45 [58] Gaberscek, Nature Materials 2010, 9, 448-453.
- [59] N. Meethong, H. Y. S. Huang, S. A. Speakman, W. C. Carter, Y. M. Chiang, Adv. Funct. Mater. 2007, 17, 1115-1123.
- [60] G. Y. Chen, X. Y. Song, T. J. Richardson, Electrochem. Solid State Lett. 2006, 9, A295-A298.
- [61] P. P. Prosini, J. Electrochem. Soc. 2005, 152, A1925-A1929.
- D. X. Gouveia, V. Lemos, J. A. C. de Paiva, A. G. Souza, J. [62] Mendes, S. M. Lala, L. A. Montoro, J. M. Rosolen, Physical Review B 2005, 72, 024105.
- D. Li, T. Zhang, X. Z. Liu, P. He, R. W. Peng, M. Wang, M. 55 [63] Han, H. S. Zhou, J. Power Sources 2013, 233, 299-303.
- [64] C. V. Ramana, A. Mauger, F. Gendron, C. M. Julien, K. Zaghib, J. Power Sources 2009, 187, 555-564.
- Y. Orikasa, T. Maeda, Y. Koyama, H. Murayama, K. Fukuda, [65] H. Tanida, H. Arai, E. Matsubara, Y. Uchimoto, Z. Ogumi, 60 130 Chem. Mater. 2013, 25, 1032-1039.
- [66] W. C. Chueh, F. El Gabaly, J. D. Sugar, N. C. Bartelt, A. H. McDaniel, K. R. Fenton, K. R. Zavadil, T. Tyliszczak, W. Lai, K. F. McCarty, Nano Lett. 2013, 13, 866-872.
- P. Bai, G. Y. Tian, Electrochim. Acta 2013, 89, 644-651. 65 [67]
- [68] T. Ichitsubo, K. Tokuda, S. Yagi, M. Kawamori, T. Kawaguchi, T. Doi, M. Oishi, E. Matsubara, J Mater Chem A 2013, 1, 2567-2577.
- [69] S. Dargaville, T. W. Farrell, Electrochim. Acta 2013, 94, 143-158.

- [70] L. Wang, T. Maxisch, G. Ceder, Physical Review B 2006, 73, 195107.
- [71] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
- M. S. A. Rasiman, F. W. Badrudin, T. I. T. Kudin, M. K. 75 [72] Yaakob, M. F. M. Taib, M. Z. A. Yahya, O. H. Hassan, Integr Ferroelectr 2014, 155, 71-79.
 - S. Leoni, M. Baldoni, L. Craco, J. O. Joswig, G. Seifert, Z [73] Phys Chem 2012, 226, 95-106.
- 80 [74] M. E. A. Y. de Dompablo, N. Biskup, J. M. Gallardo-Amores, E. Moran, H. Ehrenberg, U. Amador, Chem. Mater. 2010, 22, 994-1001.
 - S. Q. Yang, T. R. Zhang, Z. L. Tao, J. Chen, Acta Chim Sinica [75] 2013, 71, 1029-1034.
- N. Marx, L. Croguennec, D. Carlier, A. Wattiaux, F. Le Cras, 85 [76] E. Suard, C. Delmas, Dalton Trans. 2010, 39, 5108-5116.
 - L. Gu, C. B. Zhu, H. Li, Y. Yu, C. L. Li, S. Tsukimoto, J. [77] Maier, Y. Ikuhara, Journal of the American Chemical Society 2011. 133. 4661-4663.
- R. Malik, F. Zhou, G. Ceder, Nature Materials 2011, 10, 587-90 [78] 590
 - G. Y. Chen, X. Y. Song, T. J. Richardson, J. Electrochem. [79] Soc. 2007, 154, A627-A632.
 - P. Bai, D. A. Cogswell, M. Z. Bazant, Nano Lett. 2011, 11, [80] 4890-4896
 - [81] J. L. Dodd, R. Yazami, B. Fultz, Electrochem. Solid State Lett. 2006, 9, A151-A155.
 - C. Delacourt, J. Rodriguez-Carvajal, B. Schmitt, J. M. [82] Tarascon, C. Masquelier, Solid State Sciences 2005, 7, 1506-1516.
 - [83] C. Delacourt, P. Poizot, J. M. Tarascon, C. Masquelier, Nature Materials 2005, 4, 254-260.
 - A. Yamada, H. Koizumi, S. I. Nishimura, N. Sonoyama, R. [84] Kanno, M. Yonemura, T. Nakamura, Y. Kobayashi, Nature Materials 2006, 5, 357-360.
 - [85] P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J. M. Tarascon, C. Masquelier, Nature Materials 2008, 7, 741-747.
 - N. Meethong, H. Y. S. Huang, W. C. Carter, Y. M. Chiang, [86] Electrochem. Solid State Lett. 2007, 10, A134-A138.
 - [87] J. Maier, Nature Materials 2005, 4, 805-815.
 - [88] X. L. Wu, L. Y. Jiang, F. F. Cao, Y. G. Guo, L. J. Wan, Adv. Mater. 2009. 21. 2710-2714.
 - [89] P. G. Bruce, B. Scrosati, J. M. Tarascon, Angew. Chem.-Int. Edit. 2008, 47, 2930-2946.
 - [90] Y. Wang, G. Z. Cao, Adv. Mater. 2008, 20, 2251-2269.
 - [91] F. Yu, J. J. Zhang, Y. F. Yang, G. Z. Song, J. Power Sources 2010, 195, 6873-6878.
 - [92] C. W. Sun, S. Rajasekhara, J. B. Goodenough, F. Zhou, J. Am. Chem. Soc. 2011, 133, 2132-2135.
 - [93] G. X. Wang, L. Yang, S. L. Bewlay, Y. Chen, H. K. Liu, J. H. Ahn, J. Power Sources 2005, 146, 521-524.
 - F. Yu, J. J. Zhang, Y. F. Yang, G. Z. Song, Electrochim. Acta [94] 2009, 54, 7389-7395.
- Y. Ding, Y. Jiang, F. Xu, J. Yin, H. Ren, Q. Zhuo, Z. Long, P. 125 [95] Zhang, Electrochem. Commun. 2010, 12, 10-13.
 - [96] B. Jin, E. M. Jin, K. H. Park, H. B. Gu, Electrochem. Commun. 2008, 10, 1537-1540.
 - Z. L. Liu, S. W. Tay, L. A. Hong, J. Y. Lee, J. Solid State [97] Electrochem. 2011, 15, 205-209.
 - [98] C. S. Li, S. Y. Zhang, F. Y. Cheng, W. Q. Ji, J. Chen, Nano Res 2008, 1, 242-248.
 - [99] Y. H. Rho, L. F. Nazar, L. Perry, D. Ryan, J. Electrochem. Soc. 2007, 154, A283-A289.
- 135 [100] P. S. Herle, B. Ellis, N. Coombs, L. F. Nazar, Nature Materials 2004, 3, 147-152.
 - S. X. Zhao, H. Ding, Y. C. Wang, B. H. Li, C. W. Nan, J. [101] Alloys Compd. 2013, 566, 206-211.
 - [102] S. Hamelet, M. Casas-Cabanas, L. Dupont, C. Davoisne, J. M.
 - Tarascon, C. Masquelier, Chem. Mater. 2011, 23, 32-38. [103]
 - J. Molenda, J. Marzec, Funct Mater Lett 2008, 1, 97-104.

[104]

[105]

5 [106]

[107]

[108]

[109]

[110]

15 [111]

[112]

[113]

[114]

[115]

[116]

[117]

[119]

[120]

35 [121]

[122]

[123]

[124]

[125]

[126]

[127]

50 [128]

[129]

[130]

55

45

30 [118]

25

RSC Ad	dvances	
C. A. J. Fisher, M. S. Islam, J. Mater. Chem. 2008, 18, 1209-	[138]	F. 1
1215. S. Franger, F. Le Cras, C. Bourbon, H. Rouault, J. Power	[139]	Mai S. Y
Sources 2003, 119, 252-257.	75	Elec
<i>Mater. Chem.</i> 2007 , <i>17</i> , 3248-3254.	[140]	г. 1 200
L. Wang, F. Zhou, Y. S. Meng, G. Ceder, <i>Physical Review B</i> 2007 , <i>76</i> , 165435.	[141]	J. 1 Ric
Y. S. Meng, M. E. Arroyo-de Dompablo, <i>Energy & Environmental Science</i> 2009 , <i>2</i> , 589-609. C. Y. Nan, J. Lu, L. H. Li, L. Li, O. Peng, Y. D. Li, <i>Nano</i>	⁸⁰ [142]	888 B. 1 300
Res 2013, 6, 469-477.	[143]	W.
<i>Soc.</i> 2011 , <i>158</i> , A736-A740.	85 [144]	X. 1
H. F. Xiang, D. W. Zhang, Y. Jin, C. H. Chen, J. S. Wu, H. H. Wang, <i>J. Mater. Sci.</i> 2011 , <i>46</i> , 4906-4912.	[145]	Pov H. (
S. L. Yang, X. F. Zhou, J. G. Zhang, Z. P. Liu, J. Mater. Chem. 2010, 20, 8086-8091.	[146]	D. Z Elec
K. Saravanan, M. V. Reddy, P. Balaya, H. Gong, B. V. R. Chowdari, J. J. Vittal J. Mater. Chem. 2009 , <i>19</i> , 605-610.	90 [147]	S. 2 201
K. Saravanan, P. Balaya, M. V. Reddy, B. V. R. Chowdari, J. J. Vittal, <i>Energy & Environmental Science</i> 2010 , <i>3</i> , 457-464.	[148]	J. J. 5, 5
P. Balaya, K. Saravanan, S. Hariharan, in <i>Energy Harvesting</i> and Storage: Materials, Devices, and Applications, Vol. 7683	[149] 95	F. 161
(Eds.: N. K. Dhar, P. S. Wijewarnasuriya, A. K. Dutta), Spie-	[150]	М.
Int Soc Optical Engineering, Bellingham, 2010 . Z. Y. Bi, X. D. Zhang, W. He, D. D. Min, W. S. Zhang, <i>Rsc</i> <i>Adv</i> 2013 . <i>3</i> 19744-19751	[151]	Y. 2 Qia 505
K. T. Lee, J. Cho, Nano Today 2011 , 6, 28-41. C. M. Julien, A. Mauger, K. Zaghib, J. Mater. Chem. 2011	100 [152]	X. I Pan
21, 9955-9968.	[153]	S. V
X. Zhao, B. M. Sanchez, P. J. Dobson, P. S. Grant, <i>Nanoscale</i> 2011 3, 830-855	[154]	H. I
D. Zhang, R. Cai, Y. K. Zhou, Z. P. Shao, X. Z. Liao, Z. F.	[105	18,
Ma, <i>Electrocnim. Acta</i> 2010 , 55, 2653-2661. Y. G. Wang, Y. R. Wang, E. J. Hosono, K. X. Wang, H. S.	[155]	L. J Chi
Zhou, Angew. ChemInt. Edit. 2008, 47, 7461-7465. S. Y. Lim, C. S. Yoon, J. P. Cho, Chem. Mater. 2008, 20,	[156] 110	J. C J. G
4560-4564. M. Konarova, J. Taniguchi, J. Power, Sources, 2010 , 195	[157]	G. 201
3661-3667.	[158]	M.
Liang, M. Gauthier, Y. C. K. Chen-Wiegart, M. N. Banis, X. F. Li, R. Y. Li, J. Wang, T. K. Sham, X. L. Sun, <i>Nat Commun</i>	115 [159]	L. Elec
2014 , 5. B. Kang, G. Ceder, <i>Nature</i> 2009 , 458, 190-193	[160]	J. C Pen
F. Yu, S. G. Ge, B. Li, G. Z. Sun, R. G. Mei, L. X. Zheng, <i>Current Inorganic Chemistry</i> 2012 , <i>2</i> , 194-212.	[161] 120	Z. H 201
F. Cheng, Z. Tao, J. Liang, J. Chen, <i>Chem. Mater.</i> 2008 , <i>20</i> , 667-681.	[162]	X. Z Eleo
M. R. Hill, G. J. Wilson, L. Bourgeois, A. G. Pandolfo, Energy & Environmental Science 2011 , <i>4</i> , 965-972.	[163]	S. S 702
L. Dimesso, C. Forster, W. Jaegermann, J. P. Khanderi, H. Tempel, A. Popp, J. Engstler, J. J. Schneider, A. Sarapulova	125 [164]	A. ` 200
D. Mikhailova, L. A. Schmitt, S. Oswald, H. Ehrenberg, <i>Chemical Society Reviews</i> 2012 , <i>41</i> , 5068-5080.	[165]	Z. I 243

- Ch X. D. Zhang, X. G. Zhang, W. He, C. Y. Sun, J. Y. Ma, J. L. [131] Yuan, X. Y. Du, Colloid Surface B 2013, 103, 114-120. 130
- Y. Ma, X. L. Li, S. F. Sun, X. P. Hao, Y. Z. Wu, Int J 60 [132] Electrochem Sc 2013, 8, 2842-2848.
- [133] J. F. Qian, M. Zhou, Y. L. Cao, X. P. Ai, H. X. Yang, J. Phys. Chem. C 2010, 114, 3477-3482.
- [134] X. Qin, X. H. Wang, H. M. Xiang, J. Xie, J. J. Li, Y. C. Zhou, 135 [169] J. Phys. Chem. C 2010, 114, 16806-16812.
- [135] D. G. Tong, Y. L. Li, W. Chu, P. Wu, F. L. Luo, Dalton Trans. 2011, 40, 4087-4094.
- [136] D. W. Han, W. H. Ryu, W. K. Kim, S. J. Lim, Y. I. Kim, J. Y. Eom, H. S. Kwon, Acs Appl Mater Inter 2013, 5, 1342-1347. 140
- 70 [137] A. Carné-Sánchez, I. Imaz, M. Cano-Sarabia, D. Maspoch, Nat Chem 2013, 5, 203-211.

- Yu, J. J. Zhang, Y. F. Yang, G. Z. Song, Journal of terials Chemistry 2009, 19, 9121-9125.
- Yu, S. Kim, T. Y. Kim, J. H. Nam, W. I. Cho, J. Appl. ectrochem. 2013, 43, 253-262.
- Yu, J. J. Zhang, Y. F. Yang, G. Z. Song, J. Power Sources **)9**, 189, 794-797.
- Liu, T. E. Conry, X. Y. Song, M. M. Doeff, T. J. chardson, Energy & Environmental Science 2011, 4, 885-
- F. Zou, Y. Q. Wang, S. M. Zhou, Mater. Lett. 2013, 92, -303
- Chang, S. J. Kim, I. T. Park, B. W. Cho, K. Y. Chung, H. Shin, J. Alloys Compd. 2013, 563, 249-253.
- H. Rui, Y. Jin, X. Y. Feng, L. C. Zhang, C. H. Chen, J. wer Sources 2011, 196, 2109-2114.
- Q. Li, H. S. Zhou, Chem. Commun. 2012, 48, 1201-1217.
- Zane, M. Carewska, S. Scaccia, F. Cardellini, P. P. Prosini, ectrochim. Acta 2004, 49, 4259-4271.
- Xin, Y. G. Guo, L. J. Wan, Accounts of Chemical Research 12, 45, 1759-1769.
- Wang, X. L. Sun, Energy & Environmental Science 2012, 163-5185
- Y. Kang, J. Ma, B. H. Li, New Carbon Mater. 2011, 26, -170
- Inagaki, Carbon 2012, 50, 3247-3266.
- Zhou, C. D. Gu, J. P. Zhou, L. J. Cheng, W. L. Liu, Y. Q. ao, X. L. Wang, J. P. Tu, Electrochim. Acta 2011, 56, 5054-59
- D. Yan, G. L. Yang, J. Liu, Y. C. Ge, H. M. Xie, X. M. , R. S. Wang, Electrochim. Acta 2009, 54, 5770-5774.
- W. Oh, S. T. Myung, S. M. Oh, K. H. Oh, K. Amine, B. osati, Y. K. Sun, Adv. Mater. 2010, 22, 4842-4845.
- M. Xie, R. S. Wang, J. R. Ying, L. Y. Zhang, A. F. Jalbout, Y. Yu, G. L. Yang, X. M. Pan, Z. M. Su, Adv. Mater. 2006, 2609-2613.
- J. Zeng, Q. Gong, X. Z. Liao, L. He, Y. S. He, Z. F. Ma, in. Sci. Bull. 2011, 56, 1262-1266.
- 2. Zheng, X. H. Li, Z. X. Wang, J. H. Li, L. Wu, L. J. Li, H. Buo, Acta Physico-Chimica Sinica 2009, 25, 1916-1920.
- Yang, C. Y. Jiang, X. M. He, J. R. Ying, J. Gao, Ionics 13, 19, 1247-1253.
- R. Yang, W. H. Ke, S. H. Wu, J. Power Sources 2007, 165, 5-650
- Wu, J. J. Lu, S. K. Zhong, Journal of Solid State ectrochemistry 2013, 17, 2235-2241.
- 2. Zheng, X. H. Li, Z. X. Wang, D. M. Qin, H. J. Guo, W. J. ng, J. Inorg. Mater. 2009, 24, 143-146.
- P. Ma, G. J. Shao, X. Wang, J. J. Song, G. L. Wang, Ionics 13, 19, 1861-1866.
- Z. Liao, Z. F. Ma, Q. Gong, Y. S. He, L. Pei, L. J. Zeng, ctrochem. Commun. 2008, 10, 691-694.
- S. Zhang, K. Xu, T. R. Jow, J. Power Sources 2006, 159, 2-707
- Yamada, S. C. Chung, K. Hinokuma, J. Electrochem. Soc. **)1**. 148. A224-A229
- H. Li, D. M. Zhang, F. X. Yang, J. Mater. Sci. 2009, 44, 5-2443
- J. R. Ying, M. Lei, C. Y. Jiang, C. R. Wan, X. M. He, J. J. Li, [166] L. Wang, J. G. Ren, J. Power Sources 2006, 158, 543-549.
- [167] J. F. Ni, H. H. Zhou, J. T. Chen, X. X. Zhang, Mater. Lett. 2007, 61, 1260-1264.
- [168] X. M. Lou, Y. X. Zhang, J. Mater. Chem. 2011, 21, 4156-4160.
 - P. K. Shen, H. L. Zou, H. Meng, M. M. Wu, Funct Mater Lett 2011, 4, 209-215.
- [170] Y. H. Yin, M. X. Gao, J. L. Ding, Y. F. Liu, L. K. Shen, H. G. Pan, J. Alloys Compd. 2011, 509, 10161-10166.
- [171] Y. H. Yin, M. X. Gao, H. G. Pan, L. K. Shen, X. Ye, Y. F. Liu, P. S. Fedkiw, X. W. Zhang, J. Power Sources 2012, 199, 256-262.

105

110

115

125

135

- [172] Z. P. Ma, G. J. Shao, W. Wang, C. Y. Zhang, Asian J. Chem. 2013, 25, 3579-3582.
- [173] S. W. Oh, S. T. Myung, S. M. Oh, C. S. Yoon, K. Amine, Y. K. Sun, *Electrochim. Acta* 2010, 55, 1193-1199.
- s [174]
 Z. R. Chang, H. J. Lv, H. W. Tang, H. J. Li, X. Z. Yuan, H. J.

 Wang, *Electrochim. Acta* 2009, 54, 4595-4599.
- [175] S. W. Oh, S. T. Myung, H. J. Bang, C. S. Yoon, K. Amine, Y. K. Sun, *Electrochem. Solid State Lett.* 2009, *12*, A181-A185.
- [176] J. K. Kim, Crystengcomm 2014, 16, 2818-2822.
- 10 [177] F. Yu, L. L. Zhang, M. Y. Zhu, Y. X. An, L. L. Xia, X. G. Wang, B. Dai, *Nano Energy* **2014**, *3*, 64-79.
- [178] J. M. Tarascon, N. Recham, M. Armand, J. N. Chotard, P. Barpanda, W. Walker, L. Dupont, *Chem. Mater.* 2010, 22, 724-739.
- 15 [179] O. Toprakci, H. A. K. Toprakci, L. W. Ji, X. W. Zhang, KONA Powder Part. J. 2010, 50-73.
- [180] S. M. Oh, H. G. Jung, C. S. Yoon, S. T. Myung, Z. H. Chen, K. Amine, Y. K. Sun, J. Power Sources 2011, 196, 6924-6928.
- [181] J. Wang, Z. B. Shao, H. Q. Ru, *Ceram Int* **2014**, *40*, 6979-6985.
- [182] J. J. Tan, A. Tiwari, *Nanosci Nanotech Let* **2011**, *3*, 487-490.
- [183] Y. Y. Liu, D. W. Liu, Q. F. Zhang, G. Z. Cao, Journal of Materials Chemistry 2011, 21, 9969-9983.
- [184] D. Jugovic, M. Mitric, M. Kuzmanovic, N. Cvjeticanin, S.
 ²⁵ Skapin, B. Cekic, V. Ivanovski, D. Uskokovic, *J. Power Sources* 2011, *196*, 4613-4618.
- [185] C. Miao, J. Zhou, S. Q. Sun, X. Y. Wang, *Rare Metal Mat Eng* 2013, 42, 379-382.
- [186] Y. Zhang, Q. Y. Huo, P. P. Du, L. Z. Wang, A. Q. Zhang, Y. 100
- H. Song, Y. Lv, G. Y. Li, Synth. Met. 2012, 162, 1315-1326.
 [187] F. Yu, J. J. Zhang, Y. F. Yang, G. Z. Song, Chin. J. Inorg. Chem. 2009, 25, 42-46.
- [188] J. P. Jegal, K. B. Kim, J. Power Sources 2013, 243, 859-864.
- [189] J. L. Yang, J. J. Wang, Y. J. Tang, D. N. Wang, X. F. Li, Y. H.
- ³⁵ Hu, R. Y. Li, G. X. Liang, T. K. Sham, X. L. Sun, *Energy & Environmental Science* **2013**, *6*, 1521-1528.
- [190] P. P. Prosini, M. Carewska, S. Scaccia, P. Wisniewski, M. Pasquali, *Electrochim. Acta* 2003, 48, 4205-4211.
- [191] P. Jozwiak, J. E. Garbarczyk, M. Wasiucionek, I. Gorzkowska,
 F. Gendron, A. Mauger, C. M. Julien, *Solid State Ionics* 2008, 179, 46-50.
- [192] L. Yang, L. F. Jiao, Y. L. Miao, H. T. Yuan, J. Solid State *Electrochem.* **2009**, *13*, 1541-1544.
- [193] J. Liu, J. W. Wang, X. D. Yan, X. F. Zhang, G. L. Yang, A. F.
 Jalbout, R. S. Wang, *Electrochim. Acta* 2009, 54, 5656-5659.
- [194] C. W. Kim, M. H. Lee, W. T. Jeong, K. S. Lee, J. Power Sources 2005, 146, 534-538.
- [195] C. W. Kim, J. S. Park, K. S. Lee, J. Power Sources 2006, 163, 144-150.
- ⁵⁰ [196] K. T. Lee, K. S. Lee, J. Power Sources 2009, 189, 435-439.
- [197] Y. B. Xu, Y. J. Lu, L. Yan, Z. Y. Yang, R. D. Yang, *J. Power Sources* **2006**, *160*, 570-576.
- [198] S. B. Lee, S. H. Cho, S. J. Cho, G. J. Park, S. H. Park, Y. S. Lee, *Electrochem. Commun.* **2008**, *10*, 1219-1221.
- 55 [199] M. Hermanek, R. Zboril, M. Mashlan, L. Machala, O. Schneeweiss, *Journal of Materials Chemistry* 2006, 16, 1273-1280.
- [200] W. Ojczyk, J. Marzec, K. Swierczek, W. Zajac, M. Molenda, R. Dziembaj, J. Molenda, J. Power Sources 2007, 173, 700-706.
- [201] H. Liu, J. Y. Xie, K. Wang, Solid State Ionics 2008, 179, 1768-1771.
- [202] H. W. Liu, D. G. Tang, *Solid State Ionics* **2008**, *179*, 1897-1901.
- 65 [203] Y. Lin, J. B. Wu, Y. B. Yu, in *Multi-Functional Materials and Structures Iii, Pts 1 and 2, Vol. 123-125*, Trans Tech Publications Ltd, Stafa-Zurich, 2010, pp. 1227-1230.
- [204] M. X. Gao, Y. Lin, Y. H. Yin, Y. F. Liu, H. G. Pan, *Electrochim. Acta* 2010, *55*, 8043-8050.
- 70 [205] M. Konarova, I. Taniguchi, *Mater. Res. Bull.* 2008, 43, 3305-3317.

- [206] M. Konarova, I. Taniguchi, J. Power Sources 2009, 194, 1029-1035.
- [207] Y. Lin, M. X. Gao, D. Zhu, Y. F. Liu, H. G. Pan, J. Power Sources 2008, 184, 444-448.
- [208] G. Arnold, J. Garche, R. Hemmer, S. Strobele, C. Vogler, A. Wohlfahrt-Mehrens, J. Power Sources 2003, 119, 247-251.
- [209] Y. Z. Dong, Y. M. Zhao, H. Duan, L. Chen, Z. F. He, Y. H. Chen, J. Solid State Electrochem. 2010, 14, 131-137.
- 80 [210] S. Balaji, D. Mutharasu, N. Sankara Subramanian, K. Ramanathan, *Ionics* 2009, 15, 765-777.
 - [211] K. Cherian, Adv Mater Process 2011, 169, 23-27.
 - [212] X. F. Guo, H. Zhan, Y. H. Zhou, Solid State Ionics 2009, 180, 386-391.
- 85 [213] M. Higuchi, K. Katayama, Y. Azuma, M. Yukawa, M. Suhara, J. Power Sources 2003, 119, 258-261.
 - [214] M. S. Song, Y. M. Kang, J. H. Kim, H. S. Kim, D. Y. Kim, H. S. Kwon, J. Y. Lee, J. Power Sources 2007, 166, 260-265.
 - [215] M. S. Song, Y. M. Kang, Y. I. Kim, K. S. Park, H. S. Kwon, *Inorg. Chem.* 2009, 48, 8271-8275.
 - [216] K. S. Park, J. T. Son, H. T. Chung, S. J. Kim, C. H. Lee, H. G. Kim, *Electrochem. Commun.* 2003, 5, 839-842.
 - [217] H. L. Zou, G. H. Zhang, P. K. Shen, Mater. Res. Bull. 2010, 45, 149-152.
- 95 [218] L. Wang, Y. D. Huang, R. R. Jiang, D. Z. Jia, *Electrochim. Acta* 2007, 52, 6778-6783.
 - [219] L. Wang, Y. D. Huang, R. R. Jiang, D. Z. Jia, J. Electrochem. Soc. 2007, 154, A1015-A1019.
 - [220] D. Li, Y. D. Huang, N. Sharma, Z. X. Chen, D. Z. Jia, Z. P. Guo, PCCP 2012, 14, 3634-3639.
 - [221] D. Li, Y. D. Huang, D. Z. Jia, Z. P. Guo, S. J. Bao, J. Solid State Electrochem. 2010, 14, 889-895.
 - [222] Y. Zhang, H. Feng, X. B. Wu, L. Z. Wang, A. Q. Zhang, T. C. Xia, H. C. Dong, M. H. Liu, *Electrochim. Acta* 2009, 54, 3206-3210.
 - [223] X. F. Guo, Y. T. Zhang, H. Zhan, Y. H. Zhou, Solid State Ionics 2010, 181, 1757-1763.
 - [224] S. Feng, L. Guanghua, in *Modern Inorganic Synthetic Chemistry* (Eds.: X. Ruren, P. Wenqin, W. P. Qisheng HuoA2 Ruren Xu, H. Qisheng), Elsevier, Amsterdam, 2011, pp. 63-95.
 - [225] X. Q. Ou, S. Z. Xu, G. C. Liang, L. Wang, X. Zhao, Sci China Ser E 2009, 52, 264-268.
 - [226] M. K. Devaraju, I. Honma, Adv Energy Mater 2012, 2, 284-297.
 - [227] C. B. Xu, J. Lee, A. S. Teja, J. Supercrit. Fluids 2008, 44, 92-97.
 - [228] A. Aimable, D. Aymes, F. Bernard, F. Le Cras, Solid State Ionics 2009, 180, 861-866.
- 120 [229] N. Recham, L. Dupont, M. Courty, K. Djellab, D. Larcher, M. Armand, J. M. Tarascon, *Chem. Mater.* **2009**, *21*, 1096-1107.
 - [230] N. Recham, J. N. Chotard, L. Dupont, K. Djellab, M. Armand, J. M. Tarascon, J. Electrochem. Soc. 2009, 156, A993-A999.
 - [231] P. Barpanda, N. Recham, J. N. Chotard, K. Djellab, W. Walker, M. Armand, J. M. Tarascon, J. Mater. Chem. 2010, 20, 1659-1668.
 - [232] M. C. Tucker, M. M. Doeff, T. J. Richardson, R. Finones, J. A. Reimer, E. J. Cairns, *Electrochem. Solid State Lett.* 2002, 5, A95-A98.
- 130 [233] K. Shiraishi, K. Dokko, K. Kanamura, J. Power Sources 2005, 146, 555-558.
 - [234] K. Dokko, S. Koizumi, K. Sharaishi, K. Kanamura, J. Power Sources 2007, 165, 656-659.
 - [235] K. Kanamura, S. H. Koizumi, K. R. Dokko, J. Mater. Sci. 2008, 43, 2138-2142.
 - [236] K. Dokko, S. Koizumi, K. Kanamura, Chem. Lett. 2006, 35, 338-339.
 - [237] S. F. Yang, P. Y. Zavalij, M. S. Whittingham, *Electrochem. Commun.* 2001, 3, 505-508.
- 140 [238] M. Koltypin, D. Aurbach, L. Nazar, B. Ellis, J. Power Sources 2007, 174, 1241-1250.

RSC Advances

[239]	S. Franger, F. Le Cras, C. Bourbon, H. Rouault, <i>Electrochem</i> .
[240]	Solid State Lett. 2002, 5, A231-A233. J. L. Liu, R. R. Jiang, X. Y. Wang, T. Huang, A. S. Yu, J.
5 [241]	<i>Power Sources</i> 2009 , <i>194</i> , 536-540. J. Chen, S. Wang, M. S. Whittingham, J. Power Sources 2007 ,
[242]	174, 442-448. J. J. Chen, M. S. Whittingham, <i>Electrochem. Commun.</i> 2006 ,
[243]	8, 855-858. X. Q. Ou, H. C. Gu, Y. C. Wu, J. W. Lu, Y. J. Zheng,
10 [244]	<i>Electrochim. Acta</i> 2013 , <i>96</i> , 230-236. R. G. Mei, X. R. Song, Y. F. Yang, Z. G. An, J. J. Zhang, <i>Rsc</i>
	Advances 2014, 4, 5746-5752.
[245]	J. Lee, A. S. Teja, J. Supercrit. Fluids 2005, 35, 83-90.
[246] 15	K. Dokko, S. Koizumi, H. Nakano, K. Kanamura, J. Mater. Chem. 2007 , 17, 4803-4810.
[247]	J. J. Chen, M. J. Vacchio, S. J. Wang, N. Chernova, P. Y. Zavalij, M. S. Whittingham, <i>Solid State Ionics</i> 2008 , <i>178</i> , 1676-1693.
[248]	Y. Xia, W. K. Zhang, H. Huang, Y. P. Gan, J. Tian, X. Y. Tao, J. Power Sources 2011, 196, 5651-5658
[249]	J. F. Ni, M. Morishita, Y. Kawabe, M. Watada, N. Takeichi, T. Sakai, J. Power Sources 2010, 195, 2877-2882.
[250]	Z. G. Lu, H. L. Chen, R. Robert, B. Y. X. Zhu, J. Q. Deng, L. J. Wu, C. Y. Chung, C. P. Grey, <i>Chem. Mater.</i> 2011 , <i>23</i> , 2848-
25	2859.
[251]	G. Meligrana, C. Gerbaldi, A. Tuel, S. Bodoardo, N. Penazzi, <i>J. Power Sources</i> 2006 , <i>160</i> , 516-522.
[252]	C. Gerbaldi, J. Nair, C. B. Minella, G. Meligrana, G. Mulas, S. Bodoardo, R. Bongiovanni, N. Penazzi, <i>J. Appl. Electrochem.</i>
30	2008 , <i>38</i> , 985-992.
[253]	S. Bodoardo, C. Gerbaldi, G. Meligrana, A. Tuel, S. Enzo, N. Penazzi, <i>Ionics</i> 2009 , <i>15</i> , 19-26.
[254]	G. X. Wang, X. P. Shen, J. Yao, J. Power Sources 2009, 189, 543-546.
35 [255]	Y. M. Jiang, S. J. Liao, Z. S. Liu, G. Xiao, Q. B. Liu, H. Y. Song, <i>J Mater Chem A</i> 2013 , <i>1</i> , 4546-4551.
[256]	S. Tajimi, Y. Ikeda, K. Uematsu, K. Toda, M. Sato, <i>Solid State</i> <i>Ionics</i> 2004 , <i>175</i> , 287-290.
[257]	Z. H. Xu, L. Xu, Q. Y. Lai, X. Y. Ji, <i>Mater. Res. Bull.</i> 2007, 42 883-891
[258]	F. Teng, M. D. Chen, G. Q. Li, Y. Teng, T. G. Xu, S. I. Mho, Y. Hua, <i>J. Power Sources</i> 2012 , 202, 384, 388
[259]	G. Yang, H. M. Ji, H. D. Liu, K. F. Huo, J. J. Fu, P. K. Chu, <i>J</i>
45 [260]	G. Yang, H. M. Ji, X. W. Miao, A. Q. Hong, Y. Yan, J.
[261]	D. Carriazo, M. D. Rossell, G. B. Zeng, I. Bilecka, R. Erni, M. Niederberger, <i>Small</i> 2012, <i>8</i> , 2231-2238
[262]	A. V. Murugan, T. Muraliganth, A. Manthiram, J. Phys.
⁵⁰ [263]	Cnem. C 2008, 112, 14605-14671. A. V. Murugan, T. Muraliganth, A. Manthiram, J.
[264]	<i>Electrochem. Soc.</i> 2009, 156, A/9-A85. T. Muraliganth, A. V. Murugan, A. Manthiram J. Mater.

- *Chem.* 2008, *18*, 5661-5668. 55 [265] A. V. Murugan, T. Muraliganth, P. J. Ferreira, A. Manthiram, *Inorg. Chem.* 2009, *48*, 946-952.
- [266] A. V. Murugan, T. Muraliganth, A. Manthiram, *Electrochem. Commun.* 2008, 10, 903-906.

⁶⁰

Figures

Figure 1 (a) Anisotropic harmonic lithium vibration in LiFePO₄ shown as green thermal ellipsoids and the expected curved one-dimensional diffusion pathway (Dashed lines show how the motions of Li atoms evolve from vibrations to diffusion) (b) Three-dimensional Li nuclear density data shown as blue contours. The brown octahedra represent FeO₆ and the purple tetrahedral represent PO₄ units. (Equi-value 0.15 fm·Å⁻³ of the negative portion of the coherent nuclear scattering density distribution) (c) Two-dimensional contour map sliced on the (001) plane at z =0.5 and (d) the (010) plane at y =0, whereas Fe, P and O atoms remain near their original positions. [40]

Figure 2 (a) Comparison of ionic and electronic conductivities along different along different crystallographic orientations. (b) Chemical diffusion coefficient along different directions.[47] (c) For the anti-site defect shown, Fe sits in the channel at site M1 and Li sits in the FePO₄ lattice at site M2. Dashed lines represent the diffusion pathways for Li ions in the lattice. (d) Energy landscape for diffusion around the defect resulting in cross-channel diffusion of Li ions (red) and vacancies (blue).[49]

Figure 3 (a) TEM image of a $\text{Li}_{0.5}\text{FePO}_4$ crystal, showing the domains of LiFePO₄ and FePO₄ aligned along the c-axis.[60] (b) TEM and (d) HRTEM images of the delithiated $\text{Li}_{0.45}\text{FePO}_4$ sample. The phase determination present in the edge, core, or interface of the particle, respectively. (c) Sketch of the $\text{Li}_{0.45}\text{FePO}_4$ particle. (e,f,g) Schematic views of the interfacial region between LiFePO4 and FePO4 phases.[51]

Figure 4 (a) Schematic of the annular-bright-field (ABF) imaging geometry. A demonstration of lithium sites within a LiFePO₄ crystal is shown in (b) with the corresponding line profile acquired at the box region shown in (c) to confirm the lithium contrast with respect to oxygen.[77] (d) The single-particle voltage within 0.5 < x < 0.9 in Li_xFePO₄.[78] (e) Illustration of a solid solution Li_xFePO₄ upon heating the compound to 485 K. On cooling, the parent LiFePO₄ and FePO₄ phases recrystallize, and nucleation and growth take place everywhere within the crystal.[48]

Figure 5 Schematic model of a Li_xFePO_4 nanoparticle at low overpotential. (a) Lithium ions are inserted into the particle (blue arrows) from the active (010) facet with fast diffusion and no phase separation in the depth (y) direction, forming a phase boundary of thickness λ between full and empty channels. (b) Numerical simulation of phase transformation triggered by wetting of the particle boundary.[80]

Figure 6 (a) Theoretical crystal morphologies of LiFePO_4 with equilibrium morphology from relaxed surface energies. Schematic diagrams of observed crystal morphologies of LiFePO_4 produced under different experimental conditions: (b) block-shape, (c) rectangular prism and (d) hexagonal platelet.[104] SEM morphology of (e) rectangular prism nanoplates,[110] (f) hexagonal platelet,[112] (g) SEM and (h) TEM morphologies of nanoplates.[113]

Figure 7 High rate capacity performance of LiFePO₄ particles with different observed crystal morphologies.

Figure 8 (a) Schematic illustration for active LiFePO₄ at different interfaces of electrolyte and various LiFePO4 particles.[138] (b) TEM image of LiFePO₄/C nanopaticles.[122] (c) SEM and TEM (inset) images of hollow LiFePO₄.[123] (d) SEM and TEM (inset) images of porous and coarse LiFePO₄/C composite.[136] (e) SEM image of an individual LiFePO₄/C microsphere consisted of nanoplates.[92] (f) FIB images allowing 3D visualization information obtained from the 3D porous LiFePO₄/C microsphere. (g) SEM image of A area (indicated by a rectangle in panel f). (g) SEM image of B area (indicated by a rectangle in panel f). (i) Scheme showing the structure of LiFePO₄/C nanocomposites in porous microspheres.[138]

Figure 9 High rate capacity performance of $LiFePO_4$ particles with (a) nano-sized and (b) 3D porous morphologies.

Figure 10 Rate capacity performance of LiFePO₄ at various temperature.

Figure 11 (a) Schematic diagram of the reactor for controlled crystallization process. The SEM images panorama and individual for (b) $FePO_4 \cdot xH_2O$ and (c) $Li_{0.97}Cr_{0.01}FePO_4/C$ particles prepared by controlled crystallization method.[166] (d) Porous spongelike LiFePO₄ and the corresponding cross-sectional SEM image (inset).[175] (e) SEM images of LiFePO_4/C containing 7.0 wt.% carbon synthesized by coprecipitation method using self-produced high-density FePO₄ pressure-filtrated at 20 MPa.[174] (f) SEM image of quasi-spherical FePO_4 · 2H_2O precursor synthesized by hydrothermal method.[168] (g) SEM micrographs of LiFePO₄ with quite a high tap density of 2.0 g cm⁻³ obtained by microwave assisted water-bath reaction method.[169]

Figure 12 (a) Rate capacities for various samples and (b) their volumetric energy densities.

Figure 13 (a) TG-DTA curves of the Fe(III) precursor using carbon black as carbon sources, and (b) corresponding XRD patterns of the precursor and LiFePO₄/C samples after heating at various temperatures.[94] (c) XRD profiles of the LiFePO₄/Fe₂P composites synthesized using different amounts of excess carbon.[195] (d) XRD patterns of samples prepared from a slightly oxidized Fe(II) precursor using various reductive heat treatments.[208]

Figure 14 XRD patterns of the samples prepared by different value of x in molar ratio of x:1:1 for the starting materials including LiOH, FeSO₄ and $NH_4H_2PO_4$.

Figure 15 (a) SEM images of a LiFePO₄ hemisphere, demonstrating the microsphere consisting of nanofibers.[255] (b) SEM images of LiFePO₄.[111] (c and d) SEM images of a LiFePO₄ hemisphere, and the LiFePO₄ nanorods. (e and f) SEM and HRTEM images of the LiFePO4 nanorods.[258] (g,h,i) TEM images of the large LiFePO₄ needle assembling of Lego blocks, and the corresponding SAED pattern. The white arrow shows the "cementing" zone.[229]

Tables

Table 1 Various LiFePO ₄ and the corresponding electrolyte responsible for the excellent low-t	v-temperature performance.
---	----------------------------

Materials	Synthesis method	Low temperature	Eleytrolye	Ref.
		range/ºC		
<i>LiFePO</i> ₄ / <i>C</i>	solid state reaction method	-20	$1M LiPF_6/EC+DEC$ (1:1)	[144]
<i>LiFePO</i> ₄ / <i>C</i>	solid state reaction method	-20	$1M LiPF_6/EC+DEC$ (1:1)	[151]
<i>LiFePO</i> ₄ / <i>C</i>	solid state reaction method	-40	$1M LiPF_6/EC+DEC$ (1:1)	[152]
<i>LiFePO</i> ₄ / <i>C</i>	co-precipitation method	-20	$1M LiPF_{6}/EC+DEC$ (1:1)	[153]
<i>LiFePO</i> ₄ /PAS	co-precipitation method	-20	$1M \text{ LiPF}_6/\text{EC+DEC}$ (1:1)	[154]
$LiFe_{0.98}Mn_{0.02}PO_{4}/C$	solid state reaction method	-40	$1M \text{ LiPF}_6/\text{EC+DEC}$ (1:1)	[155]
<i>LiFePO</i> ₄ / <i>C</i>	solid state reaction method	-40	1M LiPF ₆ /EC+DEC+DMC+EMC(1:1:1:3)	[162]
LiFePO₄/C	solid state reaction method	-50	1M(0.9LiBF ₄ +0.1LiBOB)/PC+EC+EMC(1:1:3)	[163]

Table 2 various samples with high volumetric energy density

Materials	Synthesis methods	Tap density(g ³ ·cm ⁻³)	Ref.
<i>LiFePO</i> ₄ / <i>Fe</i> ₂ <i>P</i>	Ball milling	1.37	[170,171]
<i>LiFePO</i> ₄ / <i>C</i>	Ball milling	1.82	[172]
$Li_{0.97}Cr_{0.01}FePO_4/C$	Controlled crystallization method	1.8	[166]
<i>LiFePO</i> ₄ / <i>PAS</i>	Controlled crystallization method	1.6	[154]
<i>LiFePO</i> ₄ / <i>C</i>	Co-precipitation method	1.5-1.6	[153,173,175]
<i>LiFePO</i> ₄ / <i>C</i>	Co-precipitation method	1.8	[174]
<i>LiFePO</i> ₄	Molten-salt method	1.55	[167]
<i>LiFePO</i> ₄ / <i>C</i>	Hydrothermal method	1.4	[168]
<i>LiFePO</i> ₄	Spray drying method	1.7	[176]
<i>LiFePO</i> ₄	Microwave assisted water-bath reaction	2.0	[169]

Table 3 Reaction mechanism of deoxidization reaction of LiFePO₄ in various conditions.

Reduction Condition	Chemical Reaction Equation	Ref.
Self-deoxidization reaction of LiFePO ₄ /C composite (at 840 °C)	$4\text{LiFePO}_4+7\text{C} \text{ (or } 14\text{C}) = 2\text{Fe}_2\text{P}+2\text{Li}_2\text{O}+2\text{P}+7\text{CO}_2 \text{ (or } 14\text{CO})$	[94,195]
Severe decomposition of LiFePO ₄ /C composite (at 938 $^{\circ}C$)	$4\text{LiFePO}_4 + C \text{ (or } 2\text{C}) = 2\text{Fe}_2\text{P} + 2\text{Li}_4\text{P}_2\text{O}_7 + \text{P} + \text{CO}_2 \text{ (or } 2\text{CO})$	[94]
Reducing agents (Fe ₃ O ₄ , Fe ₃ C, Fe nanoparticles) from FeC ₂ O ₄ ·2H ₂ O (at 675 °C)	$8FeC_2O_4 \cdot 2H_2O + 4LiFePO_4 + 24C$ (or $48C$)= $4Fe_2P + 16H_2O + 24CO_2$ (or	[199,200]
Reducing agent iron nanoparticles	48CO)	[202]
Reductive H_2 atmosphere	$8Fe+4LiFePO_4+7C$ (or 14C) = $4Fe_2P+2Li_2O+7CO_2$ (or 14CO)	[99]
microwave assisted reaction	$6LiFePO_4 + 16H_2 = 2Fe_2P + 2Li_3PO_4 + 2FeP + 16H_2O$	[215]
microwave assisted reaction (without atmosphere of inert gases)	$8LiFePO_4 = 2Li_4P_2O_7 + 4Fe_2P + 9O_2$	[213,222]
	$12LiFePO_4 + 3O_2 = 4Li_3Fe_2(PO_4)_3 + 2Fe_2O_3$	

Table 4 Summary of representative reaction mechanism of LiFePO₄ prepared by low-temperatured LPT synthesis. In the table, mediator includes organic acids or surfactant compounds.

Synthesis	Reaction reagents	Stoichiomet	Mediator	Solvent	Condition	Morphology	Ref.
type		ric ratio					
HTS	LiOH, FeSO ₄ , H ₃ PO ₄	3:1:1	-	H ₂ O	120 °C,5 h	hexagonal platelets	[232]
HTS	LiOH, FeSO ₄ , (NH ₄) ₃ PO ₄	2.5:1:1	-	H_2O	170 °C, 12 h	-	[233]
HTS	LiOH, FeSO ₄ , (NH ₄) ₂ HPO ₄	1:1:1&2:1:1	-	H_2O	170 °C, 12 h	nanoplates	[234]
HTS	LiOH, FeSO ₄ , NH ₄ H ₂ PO ₄	2:1:1	-	H ₂ O	180 °C, 5 h	spindle-like particles	This work
HTS	LiOH, FeCl ₂ ·4H ₂ O, P ₂ O ₅	6:3:2	-	H ₂ O	170 °C, 3 days	hexagonal platelets	[237]
HTS	LiOH, FeSO ₄ , H ₃ PO ₄	3:1:1	СТАВ	H_2O	120 °C,5 h	nanoparticles	[251,252,253]
HTS	LiOH, $(NH_4)_2Fe(SO_4)_2 \cdot 6H_2O$, H_3PO_4	3:1:1	P123, D230	H_2O	220 °C,24 h	nanoparticles	[106]
HTS	LiOH, $(NH_4)_2Fe(SO_4)_2 \cdot 6H_2O$, H_3PO_4	3:1:1	Citric acid	H ₂ O	180 °C, 10 h	spindle-like particles	[250]
HTS	LiOH, FeSO ₄ , NH ₄ H ₂ PO ₄	2:1:1	NTA	H_2O	180 °C, 20 h	nanowires	[254]
HTS	LiAc , FeCl ₃ , NH ₄ H ₂ PO ₄	1:1:1	SDS+EN	H_2O	180 °C, 10 h	spheres assembled from nanorods	This work
STS	LiOH, FeSO ₄ , H ₃ PO ₄	3:1:1	-	TEG+H ₂ O	190 °C, 5 h	rectangular nanoplatelets	[111]
STS	LiOH, FeSO ₄ , H ₃ PO ₄	3:1:1	Citric acid	MPG+H ₂ O	140 °C,12 h	needles asssembled nanorods	[255]
STS	LiOH, FeSO ₄ , H ₃ PO ₄	3:1:1	-	PEG400+H ₂ O	150 °C,3 h	needle-like particles	[256]
STS	LiOH, FeSO ₄ , H ₃ PO ₄	3:1:1	-	PEG400+H ₂ O	180 °C, 9 h	hexagonal platelet	[112]
ITS	LiH ₂ PO ₄ , FeC ₂ O ₄ ·2H ₂ O	1:1	-	CN-based IL	250 °C, 24 h	needles asssembled Lego blocks	[229]
ITS	LiOH, FeSO ₄ , H ₃ PO ₄	3:1:1	SDBS+Ascorbic acid	IL+H ₂ O	240 °C, 20 h	nanorods	[258]
MW-HTS	LiOH, FeSO ₄ , H ₃ PO ₄	3:1:1	-	H_2O	200 °C, 5 min	globular particles	[259]

RSC Advances

<i>MW-STS</i> LiOH, FeAc ₂ , H ₃ PO ₄ 1:1:1 - TEG 300 °C, 5 min nanorods [262]	MW-STS	LiOH, FeAc ₂ , H ₃ PO ₄	1:1:1	-	TEG	300 °C, 5 min	nanorods	[262]
---	--------	--	-------	---	-----	---------------	----------	-------