Jump to main content
Jump to site search

Issue 17, 2016
Previous Article Next Article

Engineering the singlet–triplet energy splitting in a TADF molecule

Author affiliations

Abstract

The key to engineering an efficient TADF emitter is to achieve a small energy splitting between a pair of molecular singlet and triplet states. This work makes important contributions towards achieving this goal. By studying the new TADF emitter 2,7-bis(phenoxazin-10-yl)-9,9-dimethylthioxanthene-S,S-dioxide (DPO-TXO2) and the donor and acceptor units separately, the available radiative and non-radiative pathways of DPO-TXO2 have been identified. The energy splitting between singlet and triplet states was clearly identified in four different environments, in solutions and solid state. The results show that DPO-TXO2 is a promising TADF emitter, having ΔEST = 0.01 eV in zeonex matrix. We further show how the environment plays a key role in the fine tuning of the energy levels of the 1CT state with respect to the donor 3LED triplet state, which can then be used to control the ΔEST energy value. We elucidate the TADF mechanism dynamics when the 1CT state is located below the 3LE triplet state which it spin orbit couples to, and we also discuss the OLED device performance with this new emitter, which shows maximum external quantum efficiency (E.Q.E.) of 13.5% at 166 cd m−2.

Graphical abstract: Engineering the singlet–triplet energy splitting in a TADF molecule

Back to tab navigation

Supplementary files

Publication details

The article was received on 18 Nov 2015, accepted on 11 Jan 2016 and first published on 11 Jan 2016


Article type: Paper
DOI: 10.1039/C5TC03849A
Author version available: Download Author version (PDF)
Citation: J. Mater. Chem. C, 2016,4, 3815-3824
  •   Request permissions

    Engineering the singlet–triplet energy splitting in a TADF molecule

    P. L. Santos, J. S. Ward, P. Data, A. S. Batsanov, M. R. Bryce, F. B. Dias and A. P. Monkman, J. Mater. Chem. C, 2016, 4, 3815
    DOI: 10.1039/C5TC03849A

Search articles by author

Spotlight

Advertisements