Issue 63, 2016

Predicting the binding properties of single walled carbon nanotubes (SWCNT) with an ADP/ATP mitochondrial carrier using molecular docking, chemoinformatics, and nano-QSBR perturbation theory

Abstract

Interactions between the single walled carbon nanotube (SWCNT) family and a mitochondrial ADP/ATP carrier (ANT-1) were evaluated using constitutional (functional groups, number of carbon atoms, etc.) and electronic nanodescriptors defined by (n, m)-Hamada indexes (armchair, zig-zag and chiral). The Free Energy of Binding (FEB) was determined by molecular docking simulation and the results showed that FEB was statistically more negative (p < 0.05), following the order SWCNT-COOH > SWCNT-OH > SWCNT, suggesting that polar groups favor the anchorage to ANT-1. In this regard, it was showed that key ANT-1 amino acids (Arg 79, Asn 87, Lys 91, Arg 187, Arg 234 and Arg 279) responsible for ADP-transport were conserved in ANT-1 from different species examined to predict SWCNT interactions, including shrimp Litopenaeus vannamei and fish Danio rerio commonly employed in ecotoxicology. The SWCNT-ANT-1 inter-atomic distances for the key ANT-1 amino acids were similar to that with carboxyatractyloside, a classical inhibitor of ANT-1. Significant linear relationships between FEB and n-Hamada index were found for zig-zag SWCNT and SWCNT-COOH (R2 = 0.95 in both cases). A Perturbation Theory-Nano-Quantitative Structure-Binding Relationship (PT-NQSBR) model was fitted that was able to distinguish between strong (FEB < −14.7 kcal mol−1) and weak (FEB ≥ −14.7 kcal mol−1) SWCNT–ANT-1 interactions. A simple ANT-1-inhibition respiratory assay employing mitochondria suspension from L. vannamei, showed good accordance with the predicted model. These results indicate that this methodology can be employed in massive virtual screenings and used for making regulatory decisions in nanotoxicology.

Graphical abstract: Predicting the binding properties of single walled carbon nanotubes (SWCNT) with an ADP/ATP mitochondrial carrier using molecular docking, chemoinformatics, and nano-QSBR perturbation theory

Supplementary files

Article information

Article type
Paper
Submitted
06 Apr 2016
Accepted
09 Jun 2016
First published
14 Jun 2016

RSC Adv., 2016,6, 58680-58693

Predicting the binding properties of single walled carbon nanotubes (SWCNT) with an ADP/ATP mitochondrial carrier using molecular docking, chemoinformatics, and nano-QSBR perturbation theory

M. González-Durruthy, A. V. Werhli, L. Cornetet, K. S. Machado, H. González-Díaz, W. Wasiliesky, C. P. Ruas, M. A. Gelesky and J. M. Monserrat, RSC Adv., 2016, 6, 58680 DOI: 10.1039/C6RA08883J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements