Issue 4, 2015

Sonochemical synthesis of HSiW/graphene catalysts for enhanced biomass hydrolysis

Abstract

Hydrolysis of biomass for the production of glucose was studied. Silicotungstic acid (HSiW) was deposited on graphene by an ultrasound-assisted procedure. The catalyst (HSiW/G) was characterized using a variety of physico-chemical methods. Homogeneous distribution of HSiW on the surface of graphene was demonstrated. The hydrolysis of glycogen was performed with a HSiW/G catalyst by hydrothermal treatment. The yield of glucose (66 wt%) obtained was about 8 times higher than that obtained with the same amount of bare HSiW. Stability of the HSiW/graphene even after 3 repeated uses was confirmed. The mechanism of the enhancement of catalytic activity was discussed in terms of a special interaction between the graphene support and HSiW and also the appearance of hydrophobic cavities on the surface of graphene. The formation of these cavities facilitates the anchoring of glycogen to the catalyst surface and promotes the attack of protons that leads to selective, rapid, and efficient hydrolysis.

Graphical abstract: Sonochemical synthesis of HSiW/graphene catalysts for enhanced biomass hydrolysis

Supplementary files

Article information

Article type
Paper
Submitted
24 Dec 2014
Accepted
16 Jan 2015
First published
23 Jan 2015

Green Chem., 2015,17, 2418-2425

Author version available

Sonochemical synthesis of HSiW/graphene catalysts for enhanced biomass hydrolysis

M. Klein, A. Varvak, E. Segal, B. Markovsky, I. N. Pulidindi, N. Perkas and A. Gedanken, Green Chem., 2015, 17, 2418 DOI: 10.1039/C4GC02519A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements