Issue 38, 2007

Effects of surface functional groups on protein adsorption and subsequent cell adhesion using self-assembled monolayers

Abstract

We investigated initial cell adhesion on self-assembled monolayers (SAMs) of alkanethiols carrying different functional groups including methyl (CH3), hydroxyl (OH), carboxylic acid (COOH), and amine (NH2). The combination of a surface plasmon resonance (SPR) instrument and a total internal reflection fluorescence microscope (TIRFM) allowed us to examine the kinetics of protein adsorption and correlating cell adhesion. Upon exposure of the SAM surface to a serum-containing medium, serum proteins rapidly adsorbed, and cells subsequently approached the surface. Adhesion of human umbilical vein endothelial cells (HUVECs) was greatly affected by surface functional groups; HUVECs adhered well to COOH– and NH2–SAMs, whereas poorly to CH3– and OH–SAMs. The amount of adsorbed protein from the serum-containing medium varied slightly with the terminal groups of the SAMs. On COOH– and NH2–SAMs, HUVECs adhered to bovine serum albumin (BSA)-preadsorbed surfaces with a few minutes delay, suggesting that displacement of preadsorbed BSA with cell-adhesive proteins, such as fibronectin or vitronectin, supports cell adhesion to these surfaces. Since the concentration of cell-adhesive proteins is much less than that of non-adhesive proteins such as BSA, displacement of adsorbed proteins with cell-adhesive proteins plays an important role in initial cell adhesion.

Graphical abstract: Effects of surface functional groups on protein adsorption and subsequent cell adhesion using self-assembled monolayers

Article information

Article type
Paper
Submitted
30 May 2007
Accepted
24 Jul 2007
First published
10 Aug 2007

J. Mater. Chem., 2007,17, 4079-4087

Effects of surface functional groups on protein adsorption and subsequent cell adhesion using self-assembled monolayers

Y. Arima and H. Iwata, J. Mater. Chem., 2007, 17, 4079 DOI: 10.1039/B708099A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements