This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A contamination-insensitive probe for imaging specific biomolecules by secondary ion mass spectrometry†

Selda Kabatas,a Ingrid C. Vrejat, Sinem K. Saka,b Carmen Höschen,d Katharina Kröhnert,b Felipc, Silvio O. Rizzoli*b and Ulf Diederichsen*a

Imaging techniques should differentiate between specific signals, from the biomolecules of interest and non-specific signals, from the background. We present a probe containing 15N and 14N isotopes in approximately equal proportion, for secondary ion mass spectrometry imaging. This probe designed for a precise biomolecule analysis, is insensitive to background signals.

The identification of specific elements in biological imaging typically relies on their coupling to tags that are not naturally present in cellular preparations. These tags include fluorophores in fluorescence microscopy, gold particles in immunoelectron microscopy, or enzymes in immunohistochemistry. This approach enables the analysis with high contrast, but is disturbed by the presence of any contaminations in the preparations. The contaminations are of the elements from the background that produce signals similar to those of the tags. In fluorescence imaging, the best-known source of contaminating signals is the non-specific autofluorescence of cellular elements. Similarly, the presence of naturally occurring electron-dense particles, and the activity of native enzymes, can cause problems in electron microscopy and immunohistochemistry, respectively.1

To avoid this issue we developed a novel type of tag, composed of elements that occur naturally in the preparation, but artificially manipulated to achieve different proportions to the native ones. This type of tag implies the analysis of at least two elements, in order to determine their ratio. This is possible using mass spectrometry, especially secondary ion mass spectrometry, SIMS, in which multiple isotopes emerging from the sample are measured simultaneously.

Some isotopes are common in biological samples, such as 14N or 12C, while others have far lower abundances, including 15N (natural abundance ratio of 0.00367, meaning 0.367% of all N isotopes) and 13C (natural abundance ratio of 0.012).2 This opens the possibility of generating biomolecule tags enriched in low-abundance isotopes. A probe containing a high number of 15N isotopes will increase the proportion of this isotope at specific sites in the preparation, where the particular biomolecules are located. This constitutes a signal that will be visible in 15N/14N ratio images. This signal will not be sensitive to contamination with any type of N-containing material, neither biological, nor artificial (embedding material, fixatives). Any contaminant would contain the same ratio of 15N/14N as the biological preparation (0.00367), thus leaving unaffected the ratio increase caused by the probe.

To implement this approach we turned to nanoscale secondary ion mass spectrometry (NanoSIMS) imaging, which reaches a resolution comparable to that of fluorescence microscopy in the lateral plane, and even higher in the axial direction.3,4 The difficulty for this type of technology has been to provide tags that detect specifically a biomolecule of interest. We have recently taken advantage of the flexibility of genetic code expansion5–7 to generate an isotopic probe for NanoSIMS, based on 19F isotopes.8 The low 19F abundance in biological preparations enable its identification as label using NanoSIMS with a relatively high contrast, just as fluorophores help to identify the protein in fluorescence microscopy. However, in a similar manner to fluorescence imaging, this procedure is highly sensitive to any 19F contamination in the preparation.

To overcome this problem, we decided to use genetic code expansion followed by chemoselective labelling to introduce a probe containing a high 15N/14N ratio into specific proteins (Scheme 1). Genetic code expansion relies on the incorporation of an unnatural amino acid (UAA) at a defined site in a specific protein, both in prokaryotic and eukaryotic cells.5,6 The UAA is introduced in a modified version of the protein of interest, which contains the so-called Amber stop codon (TAG).9,10 The UAA is usually chosen to contain an azide or alkyne moiety, which is coupled after cellular fixation to any desired probe through copper(I)-catalysed azide–alkyne Huisgen cycloaddition (click chemistry).11–13

Scheme 1: Labelling of UAA-introduced proteins through azide–alkyne cycloaddition between a probe containing a high 15N/14N ratio and...
fluorophore. The isotopic and fluorescent probe enables both for fluorescence (confocal microscopy) and isotopic (NanoSIMS) imaging.

To generate a suitable probe for this procedure, with a high 15N/1N ratio, we looked for small molecule candidates that contain as many 15N-isotopes as possible, and whose precursor materials are commercially available with the highest possible 15N-isotopic purity. We reasoned that the molecule should be easily incorporated into a peptide scaffold, preferably applying standard solid phase peptide synthesis (SPPS). Additionally, it should be non-charged under physiological conditions, to avoid hydrogen-bonding or electrostatic interactions with cell compartments during the process of protein labelling. Considering these criteria, we targeted the formation of triaminotriazine with six N-atoms.

The synthesis of the heteroaromatic compound started with the cyclization of 15N-2-biuret, a condensation product of 15N-urea, to 15N-3-cyanuric acid. After conversion of 15N-3-cyanuric acid to 15N-cyanuric chloride, a temperature-dependent stepwise substitution of the chlorine atoms was performed yielding the bis-alkylated and glycin-modified triazine 15N-triazGlu-OH ready for SPPS (ESI†, section 3.1). In order to specifically label proteins, three differently charged peptides were evaluated: neutral, positive and negative, and only the negative version showed chemoselective labelling (detailed information in ESI†, Supplementary Figure 1). Therefore, only the negatively charged peptide termed TriazNF1 will be further discussed. The nonapeptide TriazNF1 contains 1415N and 1614N atoms (resulting in a 15N/1N ratio of 0.875) and provides adequate solubility under physiological conditions due to the negatively charged amino acids glutamate and aspartate (Scheme 2).

![Scheme 2: The dual probe TriazNF1 contains an azide group for click chemistry, 15N (marked in blue), 1N (green) and 19F atoms (red) for isotopic imaging by NanoSIMS, and a Star635 fluorescent moiety for fluorescence imaging.](image)

Moreover, the peptide is equipped with an azide by the introduction of azidylsine for later attachment to proteins by click chemistry. Two orthogonally protected lysines were used, where the N-terminal lysine served for the linkage of two 15N-triazGly-OH units, while the other lysine was available for side chain attachment with Star635-NHS to enable a direct correlation of NanoSIMS with fluorescence microscopy. Synthesis of TriazNF1 was achieved by microwave-mediated SPPS on Sieber amide resin, applying the Fmoc synthesis protocol. Cleavage from the resin and simultaneous deprotection provided the nonapeptide 15N-triazG-Lys(15N-triazG)-Asp-Glu-Lys(15N-Gly-Asp-Glu-Lys)3-N-Gly-NH$_2$ that was coupled in solution to the Star635-NHS fluorophore (ESI†, Supplementary Figure S2). The 19F-content of the second-generation label was provided from the supplied fluorophore (Star635-NHS).

After final purification by HPLC, the constitutional accuracy of the label TriazNF1 was indicated by high resolution mass spectrometry.

To test the performance of the probe in NanoSIMS, we applied TriazNF1 to mammalian cells, whose genetic code has been expanded to incorporate the alkylamine-containing UAA propargyl-lysine (PRK), in a similar manner to our previous report. To ease the application, we also added a fluorophore to TriazNF1, which also enables its use in fluorescence microscopy, and correlative optical isotopic nanoscopy. Since the fluorophore (Star635) also contains three 19F isotopes, this furthermore allows for to compare directly the 15N/1N ratio imaging with the 19F measurements.

We tested three proteins involved in membrane fusion: the transmembrane SNAP25s syntaxin 1 and syntaxin 13, and the membrane-anchored SNAP-25. Their specific labelling by PRK incorporation and click reaction with fluorescent probes has already been demonstrated. In the presence of PRK, the transfected cells were transfected with versions of these proteins containing Amber stop codons and were then coupled to TriazNF1 by click chemistry, followed by plastic embedding, processing to 200-nm thin sections, and visualisation with both fluorescence microscopy and NanoSIMS (Figure 1). The NanoSIMS images show a higher 15N/1N ratio in cells that have successfully incorporated TriazNF1, compared to the non-transfected ones (Figure 1A–C). The 15N/1N ratio in the transfected cells is far lower than the 15N/1N ratio of the probe because the majority of the N isotopes in the cells are native cell N isotopes containing 1N in the natural proportion (0.00367).

As discussed above, we expected the imaging of 15N/1N ratios to be less sensitive to contaminating background signals than approaches based on imaging elements that are not normally present in the preparation, such as 19F. This is evident in Figure 1A, where the signal is visible in the nucleus of the cell. As the transmembrane syntaxin 1 (protein expressed in Figure 1A) cannot reach the nucleus, we are forced to conclude that the 19F signal present here is due to a contamination with unknown fluorinated molecules in the nucleus, which, however, partly compromises the 19F imaging procedure (Figure 1A). We solved this issue partly in the past by increasing the number of 19F atoms in the probe from 3 to 13, which raises the signal-to-noise ratio for 19F by more than fourfold. However, the use of a probe based on the 15N/1N ratio provides a much more elegant solution to the contamination problem.

TriazNF1 also enables a simple estimation of the copy number of tags measured from the preparation. While the number of fluorophores cannot be derived from 19F, due to non-specific contaminating signals, it can be derived from the isotope counts for 15N and 1N (ESI†, section 5). When sufficiently large areas are measured, to compensate for the pixel-to-pixel variation in the ratio, a 15N/1N ratio close to the natural abundance (0.00367) is found for the non-transfected cells. In the presence of TriazNF1, the ratio increases significantly (Figure 1C). This increase can be translated into actual copy numbers of TriazNF1 molecules by a simple equation (ESI†, section 5), which is based on the 15N and 1N counts alone. This can be estimated for each voxel, if the voxels are sufficiently large to counteract the effects of isotope counting noise. We present such an estimation in Figure 1D, using voxels of ~56x156 nm in the imaging plane, and a depth of ~20 nm. This figure panel shows that the signal-to-noise ratio increases with the exact copy numbers. The latter, however, can be obtained by calibrating the NanoSIMS instrument with standard isotopic samples, to turn the 15N and 1N counts into precise isotope numbers.

TriazNF1 can now be used as a label for specific proteins, as it enables the investigator to analyse the composition of the organelle-containing the respective proteins. For example, the cells can be treated with isotopically labelled amino acids, whose incorporation would lead to enrichment of the respective isotopes in the amino acids. This would enable a direct correlation of NanoSIMS with fluorescence microscopy, and correlative optical isotopic nanoscopy.
into cellular proteins gives a direct indication of cellular turnover, on the subcellular scale. L-Leucine-2-13C was applied for 24 h, containing one 13C atom. Its incorporation into the cell can be compared with the TriazNF1 position (Figure 1A). In addition, the analysis of the isotopic composition of the cell is not limited to N or C isotopes. Many other organic elements can be visualised (for example 32S, Figure 1A).

Finally, the fluorophore moiety of TriazNF1 enables the simple correlation of the isotopic images with further fluorescence images, obtained from immunostaining or other procedures (Figure 1A, calnexin panel, in which an immunostaining for this endoplasmic reticulum marker protein is shown).

![Image](image_url)

Figure 1: TriazNF1 specifically labels proteins for visualisation in NanoSIMS. We incorporated PRK in syntaxin 1 while expressing it in BHK cells. We then fixed the samples and labelled them by click reaction with TriazNF1, followed by embedding in LR White, and thin-sectioning. (A) Representative images of a cell expressing syntaxin 1 labelled with TriazNF1. The top panels show the fluorescence image of TriazNF1 (Star635 fluorescence), in confocal microscopy, and NanoSIMS images of the 15N and 14N isotopes, as well as their ratio. An overlay of this ratio with the fluorescence image confirms the good colocalisation of the two signals. The bottom panels show further NanoSIMS images of the same cell: 19F and its ratio to 14N, 15N, and finally a ratio of 12C to 13C, as an indication of cellular turnover (based on the incorporation of L-leucine-2-13C into newly secreted proteins). The ratio images only show pixels with more than 300 15N counts; lower values represent regions outside of the cell, in which the ratios are not meaningful. The last image in this row indicates the possibility of combining TriazNF1 with immunostainings, in fluorescence microscopy (the endoplasmic reticulum protein calnexin is shown). (B) NanoSIMS measurements for a non-transfected cell. Corresponding images for the transfected and non-transfected cell are identically scaled. (C) The mean 15N/14N ratios for cells expressing different SNARE proteins are significantly higher (***, P<0.001 compared to control in Student's t-test) than the ratio for non-transfected cells. The Y axis starts at the value of the natural abundance ratio (0.69367). For each condition we analysed a number of circular cellular regions of interest, of ~0.123 mm2; 15 regions for SNAP-25, 54 for syntaxin 1, 31 for syntaxin 13, and 137 for non-transfected cells. The error bars indicate the standard errors. (D) Image depicting syntaxin 1 copy number inferred from the 15N/14N ratio. Scale bar for all images, 2 \textmu m.

Conclusions

SIMS imaging is increasingly used as a technique to investigate the organisation and structure of cells and organelles. The main difficulty with this and similar techniques is that, while many labels can be used to investigate, for example, the turnover of all cellular proteins, very few possibilities exist for the tagging of individual biomolecules. Some proposed methods are similar to the techniques used in fluorescence imaging and in immunoelectron microscopy, coupling the protein of interest to elements that are not present in the cells, such as 19F, as discussed above, or lanthanide metals coupled to antibodies. These probes, as seen in Figure 1A are inherently sensitive to contamination by 19F or lanthanides in the sample. In contrast, a probe based on a change in the 15N/14N ratio, like TriazNF1, offers the same advantages, these being specific labelling and flexibility in both isotopic and fluorescence microscopy, while being entirely insensitive to contamination.

Acknowledgements

We would like to thank Johann Lugmeier (Department Ecology and Ecosystem Management, Centre of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany) for his technical support in NanoSIMS measurements. I. C. V. acknowledges support from a Dorothea Schlözer scholarship. This work was supported by grants to S. O. R. and U. D. from the Deutsche Forschungsgemeinschaft Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB).

Notes and references

* Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammanstr. 2, D-37077 Göttingen, Germany. E-mail: udieder@gwdg.de.

† Department of Neuro- and Sensory Physiology, University Medical Centre Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany. E-mail: s.rizzoli@gwdg.de.

‡ International Max Planck Research School Molecular Biology, Göttingen, Germany.

§ Department of Ecology and Ecosystem Management, Centre of Life and Food Sciences Weihenstephan, Technische Universität München, Emil-Ramann-Straße 2, D-85354 Freising, Germany.

†† Centre for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.

‡‡ Electronic Supplementary Information (ESI) available: Experimental details, synthetic procedures, methods employed for protein labelling and imaging measurements. See DOI: 10.1039/e000000x/

* Corresponding authors.

