ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Effect of pyridine modification of Ni/DOBDC on CO₂ capture under humid conditions

Youn-Sang Bae,^{*a} Jian Liu,^b Christopher E. Wilmer,^c Hahnbi Sun,^c Allison N. Dickey,^c Min Bum Kim,^a Annabelle I. Benin,^d Richard R. Willis,^d Dushyant Barpaga,^b M. Douglas LeVan^{*b} and Randall Q. 5 Snurr^{*c}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

The metal-organic framework Ni/DOBDC was modified with pyridine molecules to make the normally hydrophilic internal ¹⁰ surface more hydrophobic. Experiments and molecular simulations show that the pyridine modification reduces H₂O adsorption while retaining substantial CO₂ capacity at the conditions of interest for carbon capture from flue gas.

- Carbon dioxide (CO₂) is considered the primary ¹⁵ anthropogenic greenhouse gas and the major contributor to global warming. Among the options for capturing CO₂ produced during energy generation from fossil fuels, postcombustion capture is perhaps the most feasible on a short time scale, since many of the proposed capture technologies ²⁰ can be retrofitted to existing power plants, which are major sources of greenhouse gas.¹ Although absorption by aqueous amine solutions is currently the leading technology for post-
- combustion CO₂ capture, the use of adsorption processes with appropriate porous materials may reduce the costs associated ²⁵ with capture and sequestration because of the relatively milder conditions.²
- Metal-organic frameworks (MOFs),³⁻⁵ a rapidly growing class of porous adsorbents, have received considerable attention due to their tunable structures as well as their ³⁰ potential in CO₂ separation and capture. Recently, Bae and Snurr⁶ evaluated over 40 MOFs for their potential in CO₂ separation processes using five adsorbent evaluation criteria. The comparison with three commercially available adsorbents
- including zeolites showed that several MOFs are promising ³⁵ for CO_2 separations. It should be noted that a difficulty in using traditional zeolites for CO_2 capture from flue gases is the adsorption of water, which is contained in the flue gases and is strongly adsorbed in the zeolite pores.⁷ Therefore, it is important to take water into account when considering CO_2
- ⁴⁰ separation and capture in MOF materials. Previously, the effect of water on the CO_2 capacity has been investigated for the MOF HKUST-1 and for the M/DOBDC MOF series (where M = Zn, Mg, Co, and Ni; DOBDC = 2,5-dihydroxybenzenedicarboxylic acid). The MOF M/DOBDC⁸
- ⁴⁵ is also denoted CPO-27-M⁹ or M-MOF-74¹⁰ in the literature. These MOFs are considered promising for CO₂ capture from flue gas. Low et al.¹¹ confirmed that HKUST-1 and Zn/DOBDC show reasonable hydrothermal stabilities from

steaming tests. In a combined experimental and simulation 50 study, Yazaydin et al.¹² showed that the CO₂ capacity for HKUST-1 can be mildly enhanced by preadsorbing water molecules on the open metal sites. Liu et al.⁷ experimentally measured the adsorption equilibrium of CO₂, H₂O vapor, and their mixtures in two MOFs (HKUST-1 and Ni/DOBDC) and 55 two zeolites (5A and NaX) and showed that water does not inhibit CO₂ adsorption for the two MOFs as much as it does for the two zeolites. Ni/DOBDC retained considerable CO2 capacity under moderate water loadings. On the other hand, Kizzie et al.¹³ showed recently that the other MOFs in the 60 series, Mg/DOBDC and Zn/DOBDC, suffer significant reductions in their CO₂ capacities after hydration and In addition, Liu et al.¹⁴ compared the regeneration. hydrothermal stabilities of Ni/DOBDC and Mg/DOBDC. Their results showed that Ni/DOBDC can maintain its CO₂ 65 capacity after steam conditioning and long-term storage, whereas Mg/DOBDC cannot. These studies suggest that Ni/DOBDC may be a promising material for CO₂ capture from flue gases, which typically contain considerable water content.

Despite outperforming other adsorbents, Ni/DOBDC 70 showed suppressed CO₂ capacities under conditions of 40% relative humidity (RH) due to the hydrophilic nature of the open metal sites.⁷ Here, we modified Ni/DOBDC with pyridine molecules in a post-synthesis treatment to create a 75 more hydrophobic surface within the pores. We reasoned that covering some of the hydrophilic open metal sites with hydrophobic pyridine molecules would reduce H₂O adsorption while retaining substantial CO₂ capacity at the industrially relevant conditions. In order to compare CO₂ capacities under 80 humid conditions between the unmodified and modified Ni/DOBDC material, we measured experimental adsorption isotherms for CO₂, H₂O vapor, as well as mixtures of both. In addition, these experimental isotherms were compared with grand canonical Monte Carlo (GCMC) simulations performed 85 on the unmodified Ni/DOBDC structure as well as on several pyridine-modified structures to understand and interpret the experimental results.

Both the BET surface area and pore volume decreased when Ni/DOBDC was modified with pyridines (see **Table** 90 **S1**). These are expected results because bulky pyridine

40

groups

Fig. 1. Structures of (a) hy-Ni/DOBDC and (b) 33%Py-c-hy-Ni/DOBDC, where the letter c indicates the arrangement of the pyridine molecules. See Figure S1.

were added into the pores. The surface area and total pore volume of experimental Ni/DOBDC are rather smaller than those calculated for the perfect crystal structure of Ni/DOBDC (see **Table S2**). This discrepancy may come from ¹⁰ partial collapse after the evacuation and/or some remaining guest solvents, such as water. However, the experimental surface area (798 m²/g) is almost the same as the value (784 m²/g) reported by Liu et al.¹⁴ Interestingly, the experimental surface area and total pore volume match very closely with ¹⁵ the calculated values (796 m²/g) for the hydrated Ni/DOBDC (hy-Ni/DOBDC) in which H₂O molecules occupy all of the open metal sites (**Fig. 1a**).

Since it was not possible to obtain a crystal structure of Py-Ni/DOBDC, we computationally constructed hypothetical ²⁰ structures. To make the construction faster and more reproducible, we wrote a piece of software called FunctionalizeThis, which alters repeating motifs in large

- molecules or periodic systems in an automated way. See the Supporting Information. There was sufficient space for all the ²⁵ open metal sites in Ni/DOBDC to be substituted by pyridines (100%Py-Ni/DOBDC). However, when we calculated the accessible surface area of this 100%Py-Ni/DOBDC structure using a nitrogen probe, there was no accessible pore space in the structure. Since the experimental Py-Ni/DOBDC structure
- ³⁰ showed a large BET surface area (409 m²/g), we infer that only a portion of open metal sites were actually substituted by pyridines. In order to estimate the content of pyridines in Py-Ni/DOBDC, we created several hypothetical pyridinemodified structures (x%Py-hy-Ni/DOBDC; x = 16, 33, or 50) ³⁵ by replacing x % of coordinated water molecules in hy-

Ni/DOBDC with pyridines in several plausible arrangements (see Fig. S1). Then, we calculated the surface areas and pore

Fig. 2. Experimental and simulated isotherms in unmodified and pyridinemodified Ni/DOBDC at 298 K: (a) CO₂ and (b) H₂O.

volumes of these hypothetical pyridine-modified structures (see **Table S2**). We found that the experimental surface area (409 m²/g) and total pore volume (0.18 cm³/g) for Py-Ni/DOBDC match reasonably with those calculated for 45 33%Py-c-hy-Ni/DOBDC (433 m²/g and 0.23 cm³/g). From this, we reason that around 33% of the open metal sites in Py-Ni/DOBDC are coordinated by pyridines, possibly in a configuration resembling that of 33%Py-c-hy-Ni/DOBDC (**Fig. 1b**). For comparison, this corresponds to a loading of 50 pyridine on the Ni/DOBDC after activation of 14.0 wt%, which is in reasonable agreement with the estimate of 12 ± 2 wt% obtained from experimental results (Fig. S10).

Experimental CO₂ and H₂O adsorption isotherms at 298 K are shown in **Figs. 2a** and **2b**, respectively, for Ni/DOBDC ⁵⁵ and Py-Ni/DOBDC. As expected, the pyridine modification decreases both CO₂ and H₂O uptake due to the decreases in surface area and pore volume. Since the partial pressure of CO₂ in flue gas is typically around 10 kPa, we selected 10 kPa as the point of interest (POI) for CO₂ capture. In a previous ⁶⁰ study, Liu et al.⁷ found that Ni/DOBDC has an even higher CO₂ capacity than 5A and NaX zeolites at the POI due to very strong interactions between CO₂ and the open metal sites. In this work, the CO₂ capacity at the POI for Py-Ni/DOBDC is about 1.64 mol/kg, which is 40% less than that for ⁶⁵ Ni/DOBDC. Nevertheless, Py-Ni/DOBDC shows much less H₂O adsorption than Ni/DOBDC. Such a dramatic decrease in $\rm H_2O$ uptake cannot be solely explained by the decreases in surface area and pore volume. A contributing factor is the increased hydrophobicity of Py-Ni/DOBDC due to the

 $_5$ Fig. 3. Experimental CO_2 isotherms at 298 K for Ni/DOBDC and Py-Ni/DOBDC after preloading H_2O at about 45% RH.

presence of pyridine groups. Therefore, although Py-Ni/DOBDC shows lower CO_2 uptake than Ni/DOBDC, it is less negatively impacted by water.

- ¹⁰ To explain these experimental results, we performed GCMC simulations for hy-Ni/DOBDC and 33%Py-c-hy-Ni/DOBDC. Interestingly, the calculated isotherms for CO₂ and H₂O adsorption in hy-Ni/DOBDC and 33%Py-c-hy-Ni/DOBDC reasonably predict the experimental isotherms for
- ¹⁵ Ni/DOBDC and Py-Ni/DOBDC, although they underestimate them at low pressures (Figs. 2a and 2b). The underestimation at low pressures may come from the presence of some open metal sites in the experimental samples.

We also calculated the isosteric heat (Q_{st}) for CO₂ and H₂O ₂₀ adsorption in hy-Ni/DOBDC, 16%Py-hy-Ni/DOBDC, and

- 33% Py-c-hy-Ni/DOBDC from GCMC simulations. The Q_{st} values at low loadings clearly show correlations with the amount of pyridine in the structure (see **Fig. S7**). As the pyridine content increases, the CO₂ Q_{st} at low loadings
- ²⁵ increases but the H₂O Q_{st} at low loadings decreases. Also, snapshots of H₂O adsorption in pyridine-modified structures clearly show that H₂O molecules initially adsorb near the coordinated water located away from pyridines (see **Fig. S8**). These results support the hypothesis that the dramatic ³⁰ decrease in H₂O uptake for the Py-Ni/DOBDC sample is a
- result of the increased hydrophobicity of Py-Ni/DOBDC due to the pyridine molecules in the pores.

In order to understand whether pyridine modification can further reduce the water effect on CO_2 adsorption in Ni(DODDC, we recovered the CO, isotherms for Par

- ³⁵ Ni/DOBDC, we measured the CO_2 isotherms for Py-Ni/DOBDC with different H₂O loadings using the experimental technique previously reported.⁷ The CO_2 capacity at the POI decreases with increasing H₂O loading
- (see Fig. S9), which is similar to the previous results for ⁴⁰ Ni/DOBDC.⁷ Nevertheless, the Py-Ni/DOBDC sample retained a considerable CO₂ capacity (1.2 mol/kg) at the POI, even with a 1.0 mol/kg H₂O loading at 298 K. To see the effect of water on CO₂ adsorption more clearly, we measured CO₂ isotherms at 298 K for Ni/DOBDC and Py-Ni/DOBDC
- $_{45}$ after preloading H2O at about 45% RH conditions. Fig. 3

clearly shows that pyridine modification improves the CO₂ uptakes at 45% RH. We also calculated the selectivity of H₂O over CO₂ at 10 kPa (POI) and 298 K for Ni/DOBDC and Py-Ni/DOBDC using the experimental CO₂ isotherms obtained ⁵⁰ after preloading H₂O at 45% RH (see **Table S3**). The calculated H₂O/CO₂ selectivities for Ni/DOBDC and Py-Ni/DOBDC are 1844 and 308, respectively. This indicates that pyridine modification brought a dramatic decrease in H₂O/CO₂ selectivity due to the suppression of H₂O adsorption ⁵⁵ from the presence of hydrophobic pyridine groups.

From a combined experimental and simulation study, we found that pyridine modification of a MOF can reduce H₂O adsorption while retaining considerable CO₂ capacity at conditions of interest for flue gas separation. This indicates ⁶⁰ that post-synthesis modification of MOFs by coordinating hydrophobic ligands to unsaturated metal sites may be a powerful method to generate new sorbents for gas separation under humid conditions.

⁶⁵ RQS thanks the Department of Energy (Grant No. DEFG02-03ER15457) for support. This research has been performed as a cooperation project No. KK-1301-F0 (Synthesis of Porous Hybrids and Their Applications) and supported by the Korea Research Institute of Chemical Technology (KRICT).

70 Notes and references

^a Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, S. Korea. Tel: 82-2-2123-2755; E-mail: mowbae@yonsei.ac.kr

- ^b Department of Chemical and Biomolecular Engineering, Vanderbilt
 ^c University, PMB 351604, Nashville, Tennessee 37235-1604; E-mail: m.douglas.levan@vanderbilt.edu
 ^c Department of Chemical & Piclorical Engineering, Northwestern
- ^c Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3120. Tel: 1-847-467-2977; E-mail: snurr@northwestern.edu
- ^a UOP LLC, a Honeywell Company, Des Plaines, Illinois 60017.
 † Electronic Supplementary Information (ESI) available: experimental and modeling details, additional data. See DOI: 10.1039/b000000x/
 - 1. J. R. Li, Y. G. Ma, M. C. McCarthy, J. Sculley, J. M. Yu, H. K. Jeong,
- P. B. Balbuena and H. C. Zhou, *Coord. Chem. Rev.*, 2011, **255**, 1791. 85 2. N. Hedin, L. J. Chen and A. Laaksonen, *Nanoscale*, 2010, **2**, 1819.
- 3. J. L. C. Rowsell and O. M. Yaghi, *Microporous Mesoporous Mat.*, 2004, **73**, 3.
- 4. S. Kitagawa, R. Kitaura and S. Noro, *Angew. Chem.-Int. Ed.*, 2004, **43**, 2334.
- 90 5. G. Férey, Chem. Soc. Rev., 2008, 37, 191.
- Y.-S. Bae and R. Q. Snurr, *Angew. Chem., -Int. Ed.*, 2011, **50**, 11586.
 J. Liu, Y. Wang, A. I. Benin, P. Jakubczak, R. R. Willis and M. D. LeVan, *Langmuir*, 2010, **26**, 14301.
- 8. S. R. Caskey, A. G. Wong-Foy and A. J. Matzger, *J. Am. Chem. Soc.*, 95 2008, **130**, 10870.
- 9. P. D. C. Dietzel, V. Besikiotis and R. Blom, J. Mater. Chem., 2009, 19, 7362.
- 10. D. Britt, H. Furukawa, B. Wang, T. G. Glover and O. M. Yaghi, *Proc. Natl. Acad. Sci. U. S. A.*, 2009, **106**, 20637.
- ¹⁰⁰ 11. J. J. Low, A. I. Benin, P. Jakubczak, J. F. Abrahamian, S. A. Faheem and R. R. Willis, *J. Am. Chem. Soc.*, 2009, **131**, 15834.
 - 12. A. O. Yazaydin, A. I. Benin, S. A. Faheem, P. Jakubczak, J. J. Low, R. R. Willis and R. Q. Snurr, *Chem. Mater.*, 2009, **21**, 1425.

13. A. C. Kizzie, A. G. Wong-Foy and A. J. Matzger, *Langmuir*, 2011, 27, 6368.

- 14. J. Liu, A. I. Benin, A. M. B. Furtado, P. Jakubczak, R. R. Willis and M. D. LeVan, *Langmuir*, 2011, **27**, 11451.
- M. D. LeVan, *Langmuir*, 2011, **27**, 1145