Mechanism studies of LiFePO4 cathode material: lithiation/delithiation process, electrochemical modification and synthetic reaction
Abstract
Olivine-structured lithium ion phosphate (LiFePO4) is one of the most competitive candidates for fabricating energy-driven cathode material for sustainable lithium ion battery (LIB) systems. However, the high electrochemical performance is significantly limited by the slow diffusivity of Li-ion in LiFePO4 (ca. 10−14 cm2 s−1) together with the low electronic conductivity (ca. 10−9 S cm−1), which is the big challenge currently faced by us. To resolve the challenge, many efforts have been directed to the dynamics of the lithiation/delithiation process in LixFePO4 (0 ≤ x ≤ 1), mechanism of electrochemical modification, and synthetic reaction process, which are crucial for the development of high electrochemical performance for LiFePO4 material. In this review, in order to reflect the recent progress ranging from the very fundamental to practical applications, we specifically focus on the mechanism studies of LiFePO4 including the lithiation/delithiation process, electrochemical modification and synthetic reaction. Firstly, we highlight the Li-ion diffusion pathway in LixFePO4 and phase translation of LixFePO4. Then, we summarize the modification mechanism of LiFePO4 with high-rated capability, excellent low-temperature performance and high energy density. Finally, we discuss the synthetic reaction mechanism of high-temperature carbothermal reaction route and low-temperature hydrothermal/solvothermal reaction route.