Syntheses of 2-hydroxypyrano[3,2-c]quinolin-5-ones from 4-hydroxyquinolin-2-ones by tandem Knoevenagel condensation with aldehyde and Michael addition of enamine with the quinone methide—thermo- and photochemical approaches

(Note: The full text of this document is currently only available in the PDF Version )

Jia-Hai Ye, Ke-Qing Ling, Yan Zhang, Ning Li and Jian-Hua Xu


Abstract

2,3,4,6-Tetrahydro-2-hydroxypyrano[3,2-c]quinolin-5-one derivatives 3 are conveniently synthesized from 4-hydroxyquinolin-2(1H[hair space])-ones 4 by tandem Knoevenagel condensation of 4 with aliphatic aldehyde–Michael-type 1,4-addition of the enamine (derived from the aldehyde and diethylamine in situ) with the quinone methide (quinomethane) 9. This reaction sequence can be achieved in one pot by either direct reaction of 4 with an aldehyde in the presence of diethylamine as a base in refluxing benzene. Alternatively, in the case of 3a–c and 3g from 4 and acetaldehyde, these syntheses were carried out by way of a photochemical variant by photolysis of a benzene solution of 4 as an electron acceptor and triethylamine as an electron donor, where acetaldehyde and diethylamine are generated in situ from triethylamine in redox processes initiated by single-electron transfer (SET) between photoexcited 4 and triethylamine.


References

  1. M. F. Grundon, in The Alkaloids: Quinoline Alkaloids Related to Anthranilic Acid, vol. 32, Academic Press, London, 1988, p. 341 Search PubMed.
  2. See, for example, (a) I. S. Chen, S. J. Wu, I. J. Tsai, T. S. Wu, J. M. Pezzuto, M. C. Lu, H. Chai, N. Suh and C. M. Teng, J. Nat. Prod., 1994, 57, 1206 CrossRef CAS; (b) E. Abd and A. Hisham, Pharmazie, 1997, 52, 28 Search PubMed.
  3. (a) E. A. Clark and M. F. Grundon, J. Chem. Soc., 1964, 438 RSC; (b) M. F. Grundon, Tetrahedron, 1978, 34, 143 CrossRef CAS; (c) S. A. Barr, C. F. Neville, M. F. Grundon, D. R. Boyd, J. F. Malone and T. A. Evans, J. Chem. Soc., Perkin Trans. 1, 1995, 445 RSC; (d) B. T. Ngadjui, J. F. Ayafor, A. E. N. Bilon, B. L. Sondengam, J. D. Conolly and D. S. Rycroft, Tetrahedron, 1992, 48, 8711 CrossRef CAS.
  4. J. L. Asherson and D. W. Young, J. Chem. Soc., Perkin Trans. 1, 1980, 512 RSC.
  5. (a) J. W. Huffman and T. M. Hsu, Tetrahedron Lett., 1972, 141 CrossRef CAS; (b) F. Piozzi, P. Venturella and A. Bellino, Gazz. Chim. Ital., 1969, 99, 711 CAS; (c) A. Groot and B. J. M. Jansen, Tetrahedron Lett., 1975, 3407 CrossRef CAS; (d) R. M. Bowman, M. F. Grundon and K. J. James, J. Chem. Soc., Perkin Trans. 1, 1973, 1055 RSC; (e) M. Ramesh, P. S. Mohan and P. Shanmugam, Tetrahedron, 1984, 40, 4041 CrossRef CAS; (f) M. F. Grundon, D. M. Harrison, M. G. Magee, M. J. Rutherford and S. A. Surgenor, Proc. R. Ir. Acad., 1983, 83B, 103 Search PubMed; (g) J. Resich, A. Bathe, B. H. W. Rosenthal and R. A. Salehi-Artimani, J. Heterocycl. Chem., 1987, 24, 869; (h) W. E. Campbell, B. Devidovitz and G. E. Jackson, Photochemistry, 1990, 29, 1303 CrossRef CAS.
  6. K. C. Majumdar and P. K. Choudhury, Synth. Commun., 1993, 23, 1087 CAS.
  7. (a) J. H. Ye, J. Xue, K. Q. Ling and J. H. Xu, Tetrahedron Lett., 1999, 40, 1365 CrossRef CAS; (b) K. Q. Ling, G. Ji, H. Cai and J. H. Xu, Tetrahedron Lett., 1998, 39, 2381 CrossRef; (c) K. Q. Ling, X. Y. Chen, H. K. Fun, X. Y. Huang and J. H. Xu, J. Chem. Soc., Perkin Trans. 1, 1998, 4147 RSC; (d) K. Q. Ling, H. Cai, J. H. Ye and J. H. Xu, Tetrahedron, 1999, 55, 1707 CrossRef CAS.
  8. For reviews on quinone methide intermediates in organic syntheses, see (a) A. B. Turner, Q. Rev., Chem. Soc. (London), 1964, 18, 347 Search PubMed; (b) H. V. Wagner and R. Gompper, in The Chemistry of the Quinonoid Compounds, ed. S. Patai, Wiley, New York, 1974, vol. 1, Part 2 Search PubMed; (c) G. Desimoni and G. Tacconi, Chem. Rev., 1975, 75, 651 CrossRef CAS; (d) A. A. Volod'kin and V. V. Ershov, Russian Chem. Rev. (Engl. Transl.), 1988, 57, 336 Search PubMed; (e) P. Wan, B. Barker, L. Diao, M. Fischer, Y. Shi and C. Yang, Can. J. Chem., 1996, 74, 465 CASFor heterocyclic quinone methides and their applications in organic syntheses, see, for example, (f) D. H. Hua, Y. Chen, H. S. Sin, M. J. Maroto, P. D. Robinson, S. W. Newell, E. M. Perchellet, J. B. Ladesich, J. A. Freeman, J. P. Perchellet and P. K. Chiang, J. Org. Chem., 1997, 62, 6888 CrossRef CAS; (g) M. A. Chauncey, M. F. Grundon and M. J. Rutherford, J. Chem. Soc., Chem. Commun., 1988, 527 RSC and references cited therein; (h) P. D. March, M. Moreno-Manas, R. Pi and A. Trius, J. Heterocycl. Chem., 1982, 19, 335; P. D. March, M. Moreno-Manas, J. Casado, R. Pleixats, J. L. Roca and A. Trius, J. Heterocycl. Chem., 1984, 21, 85; M. Moreno-Manas, E. Papell, R. Pleixats, J. Ribas and A. Virgili, J. Heterocycl. Chem., 1986, 23, 413 CAS; (i) K. Chiba, Y. Yamaguchi and M. Tada, Tetrahedron Lett., 1998, 39, 9035 CrossRef CAS.
  9. See, for example, U. C. Yoon and P. S. Mariano, Acc. Chem. Res., 1992, 25, 233 Search PubMed.
  10. T. Kappe and C. Mayer, Synthesis, 1981, 524 CrossRef CAS.
  11. H. Suginome, K. Kobayashi, M. Itoh, S. Seko and A. Furusaki, J. Org. Chem., 1990, 55, 4933 CrossRef CAS and references cited therein.
  12. L. Meites, P. Zuman, E. B. Rupp, T. L. Fenner and A. Narayanan, CRC Handbook Series in Inorganic Electrochemistry, CRC Press, Inc., Boca Raton, Florida, 1980, vol. 50, p. 50 Search PubMed.
  13. D. Griller and D. D. M. Wayner, Pure Appl. Chem., 1989, 61, 717 CAS.
  14. (a) D. R. Buckle, B. C. C. Cantello, H. Smith and B. A. Spicer, J. Med. Chem., 1975, 18, 726 CrossRef CAS; (b) P. Roschger and W. Stadlbauer, Liebigs Ann. Chem., 1990, 821 Search PubMed.