Issue 16, 2017

Selective reduction of SWCNTs – concepts and insights

Abstract

The charging of single-walled carbon nanotube (SWCNT) mixtures by reduction via alkali metal atoms is an established first step towards covalent SWCNT functionalization. In this combined density-functional theory and experimental study, we investigate this reduction with respect to differences occurring between tubes of different electronic type (metallic (m) and semiconducting (sc) tubes, respectively). We find that metals, specifically potassium, adsorb stronger to m- than sc-SWCNTs, which can be explained by the different band structures of both tube types. We investigate this trend in detail for a variety of different chiral SWCNTs, finding a potassium coverage dependent preference of m- over sc-SWCNTs, which is predicted to allow for a selective charging of metallic tubes for K/C ratios ≤ 1/200. This selective charging can be translated into the enrichment of m-SWCNTs during dispersion of SWCNT mixtures, since only reduced tubes are dissolved from the bulk material. The results for isolated tubes can be generalized to SWCNT bundle arrangements, which means that the theoretical predicted selective charging is transferable also to this more realistic description of the experimental systems. The theoretical findings regarding an electronic type selective charging of SWCNTs have been verified by an experimental study. By a combination of Raman and absorption/emission spectroscopic analysis, a preferential dispersion of charged metallic carbon nanotubes in THF as solvent was found for the predicted low potassium concentrations. Our results lead to the conclusion that previous m/sc selective reductive functionalization reactions cannot be explained on the basis of an electronic type selective charging step, as these reactions used much higher alkali metal concentrations.

Graphical abstract: Selective reduction of SWCNTs – concepts and insights

Supplementary files

Article information

Article type
Paper
Submitted
18 May 2015
Accepted
22 Jun 2015
First published
23 Jun 2015
This article is Open Access
Creative Commons BY license

J. Mater. Chem. C, 2017,5, 3937-3947

Selective reduction of SWCNTs – concepts and insights

J. Gebhardt, S. Bosch, F. Hof, F. Hauke, A. Hirsch and A. Görling, J. Mater. Chem. C, 2017, 5, 3937 DOI: 10.1039/C5TC01407G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements