Issue 6, 2017

Highly branched unsaturated polyethylenes achievable using strained imino-cyclopenta[b]pyridyl-nickel precatalysts

Abstract

A new family of strained imino-cyclopenta[b]pyridines, 7-(ArN)-6-Me2C8H5N (Ar = 2,6-Me2Ph (L1), 2,6-Et2Ph (L2), 2,4,6-Me3Ph (L3), 2,6-Et2-4-MePh (L4), 2,6-i-Pr2Ph (L5)), have been synthesized in reasonable yield by a sequence of reactions from 2-chloro-cyclopenta[b]pyridin-7-one. Treatment of L1 and L3 with NiCl2·6H2O generates mononuclear bis-ligated [7-(ArN)-6-Me2C8H5N]2NiCl2 (Ar = 2,6-Me2Ph (Ni1), 2,4,6-Me3Ph (Ni3)), while with L2 and L4, the chloride-bridged binuclear complexes [7-(ArN)-6-Me2C8H5N]2Ni2(μ-Cl)2Cl2 (Ar = 2,6-Et2Ph (Ni2), 2,6-Et2-4-MePh (Ni4)), have been isolated; no apparent reaction occurred with L5. On activation with either MAO or MMAO, Ni1–Ni4 exhibited high activities towards ethylene polymerization with Ni3 the most active (5.02 × 106 g PE per mol Ni per h at 20 °C); rapid regeneration of the active species (3096–5478 h−1 at 20 °C) is a feature of their catalytic performance. A detailed microstructural analysis of the polyethylenes reveals the presence of vinyl and higher levels of internal vinylene groups indicative of high rates of chain isomerization, e.g., the ratio of (–CH[double bond, length as m-dash]CH–) to (H2C[double bond, length as m-dash]CH–) groups is 2.2 : 1 using Ni3/MAO at 60 °C. Agostic interactions involving γ-, δ- and higher-hydrogens are inferred in addition to β-hydrogen elimination to account for the vinylene groups and the longer chain alkyl branches. The molecular structures of Ni1 and Ni2·2MeOH are also reported.

Graphical abstract: Highly branched unsaturated polyethylenes achievable using strained imino-cyclopenta[b]pyridyl-nickel precatalysts

Supplementary files

Article information

Article type
Paper
Submitted
04 Dec 2016
Accepted
16 Jan 2017
First published
16 Jan 2017

Polym. Chem., 2017,8, 995-1005

Highly branched unsaturated polyethylenes achievable using strained imino-cyclopenta[b]pyridyl-nickel precatalysts

Y. Zhang, C. Huang, X. Wang, Q. Mahmood, X. Hao, X. Hu, C. Guo, G. A. Solan and W. Sun, Polym. Chem., 2017, 8, 995 DOI: 10.1039/C6PY02089E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements